你的位置:首页 > 数据库

[数据库]jedisLock—redis分布式锁实现


一、使用分布式锁要满足的几个条件:

  1. 系统是一个分布式系统(关键是分布式,单机的可以使用ReentrantLock或者synchronized代码块来实现)
  2. 共享资源(各个系统访问同一个资源,资源的载体可能是传统关系型数据库或者NoSQL)
  3. 同步访问(即有很多个进程同事访问同一个共享资源。没有同步访问,谁管你资源竞争不竞争)

二、应用的场景例子

  管理后台的部署架构(多台tomcat服务器+redis【多台tomcat服务器访问一台redis】+mysql【多台tomcat服务器访问一台服务器上的mysql】)就满足使用分布式锁的条件。多台服务器要访问redis全局缓存的资源,如果不使用分布式锁就会出现问题。 看如下伪代码:

long N=0L;//N从redis获取值if(N<5){N++;//N写回redis}

上面的代码主要实现的功能:

  从redis获取值N,对数值N进行边界检查,自加1,然后N写回redis中。 这种应用场景很常见,像秒杀,全局递增ID、IP访问限制等。以IP访问限制来说,恶意攻击者可能发起无限次访问,并发量比较大,分布式环境下对N的边界检查就不可靠,因为从redis读的N可能已经是脏数据。传统的加锁的做法(如java的synchronized和Lock)也没用,因为这是分布式环境,这个同步问题的救火队员也束手无策。在这危急存亡之秋,分布式锁终于有用武之地了。

  分布式锁可以基于很多种方式实现,比如zookeeper、redis...。不管哪种方式,他的基本原理是不变的:用一个状态值表示锁,对锁的占用和释放通过状态值来标识。

   这里主要讲如何用redis实现分布式锁。

三、使用redis的setNX命令实现分布式锁  

1、实现的原理

  Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对Redis的连接并不存在竞争关系。redis的SETNX命令可以方便的实现分布式锁。

2、基本命令解析

1)setNX(SET if Not eXists)

语法:

SETNX key value

将 key 的值设为 value ,当且仅当 key 不存在。

若给定的 key 已经存在,则 SETNX 不做任何动作。

SETNX 是『SET if Not eXists』(如果不存在,则 SET)的简写

返回值:

  设置成功,返回 1 。
  设置失败,返回 0 。

 例子:

redis> EXISTS job        # job 不存在(integer) 0redis> SETNX job "programmer"  # job 设置成功(integer) 1redis> SETNX job "code-farmer"  # 尝试覆盖 job ,失败(integer) 0redis> GET job          # 没有被覆盖"programmer"

 所以我们使用执行下面的命令

SETNX lock.foo <current Unix time + lock timeout + 1> 

  • 如返回1,则该客户端获得锁,把lock.foo的键值设置为时间值表示该键已被锁定,该客户端最后可以通过DEL lock.foo来释放该锁。

  • 如返回0,表明该锁已被其他客户端取得,这时我们可以先返回或进行重试等对方完成或等待锁超时。

2)getSET

语法:

GETSET key value

  将给定 key 的值设为 value ,并返回 key 的旧值(old value)。

  当 key 存在但不是字符串类型时,返回一个错误。

返回值:

  返回给定 key 的旧值。
  当 key 没有旧值时,也即是, key 不存在时,返回 nil 。
3)get
语法:
GET key

 返回值:

  当 key 不存在时,返回 nil ,否则,返回 key 的值。
  如果 key 不是字符串类型,那么返回一个错误



四、解决死锁

  上面的锁定逻辑有一个问题:如果一个持有锁的客户端失败或崩溃了不能释放锁,该怎么解决

我们可以通过锁的键对应的时间戳来判断这种情况是否发生了,如果当前的时间已经大于lock.foo的值,说明该锁已失效,可以被重新使用。 

  发生这种情况时,可不能简单的通过DEL来删除锁,然后再SETNX一次(讲道理,删除锁的操作应该是锁拥有这执行的,这里只需要等它超时即可),当多个客户端检测到锁超时后都会尝试去释放它,这里就可能出现一个竞态条件,让我们模拟一下这个场景: 

C0操作超时了,但它还持有着锁,C1和C2读取lock.foo检查时间戳,先后发现超时了。 C1 发送DEL lock.foo C1 发送SETNX lock.foo 并且成功了。 C2 发送DEL lock.foo C2 发送SETNX lock.foo 并且成功了。 这样一来,C1,C2都拿到了锁!问题大了! 

  幸好这种问题是可以避免的,让我们来看看C3这个客户端是怎样做的: 

C3发送SETNX lock.foo 想要获得锁,由于C0还持有锁,所以Redis返回给C3一个0 C3发送GET lock.foo 以检查锁是否超时了,如果没超时,则等待或重试。 反之,如果已超时,C3通过下面的操作来尝试获得锁: GETSET lock.foo <current Unix time + lock timeout + 1> 通过GETSET,C3拿到的时间戳如果仍然是超时的,那就说明,C3如愿以偿拿到锁了。 如果在C3之前,有个叫C4的客户端比C3快一步执行了上面的操作,那么C3拿到的时间戳是个未超时的值,这时,C3没有如期获得锁,需要再次等待或重试。留意一下,尽管C3没拿到锁,但它改写了C4设置的锁的超时值,不过这一点非常微小的误差带来的影响可以忽略不计。 

  注意:为了让分布式锁的算法更稳键些,持有锁的客户端在解锁之前应该再检查一次自己的锁是否已经超时,再去做DEL操作,因为可能客户端因为某个耗时的操作而挂起,操作完的时候锁因为超时已经被别人获得,这时就不必解锁了。  

五、代码实现

  expireMsecs 锁持有超时,防止线程在入锁以后,无限的执行下去,让锁无法释放 
  timeoutMsecs 锁等待超时,防止线程饥饿,永远没有入锁执行代码的机会 

注意:项目里面需要先搭建好redis的相关配置

import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.dao.DataAccessException;import org.springframework.data.redis.connection.RedisConnection;import org.springframework.data.redis.core.RedisCallback;import org.springframework.data.redis.core.RedisTemplate;import org.springframework.data.redis.serializer.StringRedisSerializer;/** * Redis distributed lock implementation. * * @author zhengcanrui */public class RedisLock {  private static Logger logger = LoggerFactory.getLogger(RedisLock.class);  private RedisTemplate redisTemplate;  private static final int DEFAULT_ACQUIRY_RESOLUTION_MILLIS = 100;  /**   * Lock key path.   */  private String lockKey;  /**   * 锁超时时间,防止线程在入锁以后,无限的执行等待   */  private int expireMsecs = 60 * 1000;  /**   * 锁等待时间,防止线程饥饿   */  private int timeoutMsecs = 10 * 1000;  private volatile boolean locked = false;  /**   * Detailed constructor with default acquire timeout 10000 msecs and lock expiration of 60000 msecs.   *   * @param lockKey lock key (ex. account:1, ...)   */  public RedisLock(RedisTemplate redisTemplate, String lockKey) {    this.redisTemplate = redisTemplate;    this.lockKey = lockKey + "_lock";  }  /**   * Detailed constructor with default lock expiration of 60000 msecs.   *   */  public RedisLock(RedisTemplate redisTemplate, String lockKey, int timeoutMsecs) {    this(redisTemplate, lockKey);    this.timeoutMsecs = timeoutMsecs;  }  /**   * Detailed constructor.   *   */  public RedisLock(RedisTemplate redisTemplate, String lockKey, int timeoutMsecs, int expireMsecs) {    this(redisTemplate, lockKey, timeoutMsecs);    this.expireMsecs = expireMsecs;  }  /**   * @return lock key   */  public String getLockKey() {    return lockKey;  }  private String get(final String key) {    Object obj = null;    try {      obj = redisTemplate.execute(new RedisCallback<Object>() {        @Override        public Object doInRedis(RedisConnection connection) throws DataAccessException {          StringRedisSerializer serializer = new StringRedisSerializer();          byte[] data = connection.get(serializer.serialize(key));          connection.close();          if (data == null) {            return null;          }          return serializer.deserialize(data);        }      });    } catch (Exception e) {      logger.error("get redis error, key : {}", key);    }    return obj != null ? obj.toString() : null;  }  private boolean setNX(final String key, final String value) {    Object obj = null;    try {      obj = redisTemplate.execute(new RedisCallback<Object>() {        @Override        public Object doInRedis(RedisConnection connection) throws DataAccessException {          StringRedisSerializer serializer = new StringRedisSerializer();          Boolean success = connection.setNX(serializer.serialize(key), serializer.serialize(value));          connection.close();          return success;        }      });    } catch (Exception e) {      logger.error("setNX redis error, key : {}", key);    }    return obj != null ? (Boolean) obj : false;  }  private String getSet(final String key, final String value) {    Object obj = null;    try {      obj = redisTemplate.execute(new RedisCallback<Object>() {        @Override        public Object doInRedis(RedisConnection connection) throws DataAccessException {          StringRedisSerializer serializer = new StringRedisSerializer();          byte[] ret = connection.getSet(serializer.serialize(key), serializer.serialize(value));          connection.close();          return serializer.deserialize(ret);        }      });    } catch (Exception e) {      logger.error("setNX redis error, key : {}", key);    }    return obj != null ? (String) obj : null;  }  /**   * 获得 lock.   * 实现思路: 主要是使用了redis 的setnx命令,缓存了锁.   * reids缓存的key是锁的key,所有的共享, value是锁的到期时间(注意:这里把过期时间放在value了,没有时间上设置其超时时间)   * 执行过程:   * 1.通过setnx尝试设置某个key的值,成功(当前没有这个锁)则返回,成功获得锁   * 2.锁已经存在则获取锁的到期时间,和当前时间比较,超时的话,则设置新的值   *   * @return true if lock is acquired, false acquire timeouted   * @throws InterruptedException in case of thread interruption   */  public synchronized boolean lock() throws InterruptedException {    int timeout = timeoutMsecs;    while (timeout >= 0) {      long expires = System.currentTimeMillis() + expireMsecs + 1;      String expiresStr = String.valueOf(expires); //锁到期时间      if (this.setNX(lockKey, expiresStr)) {        // lock acquired        locked = true;        return true;      }      String currentValueStr = this.get(lockKey); //redis里的时间      if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) {        //判断是否为空,不为空的情况下,如果被其他线程设置了值,则第二个条件判断是过不去的        // lock is expired        String oldValueStr = this.getSet(lockKey, expiresStr);        //获取上一个锁到期时间,并设置现在的锁到期时间,        //只有一个线程才能获取上一个线上的设置时间,因为jedis.getSet是同步的        if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {          //防止误删(覆盖,因为key是相同的)了他人的锁——这里达不到效果,这里值会被覆盖,但是因为什么相差了很少的时间,所以可以接受          //[分布式的情况下]:如过这个时候,多个线程恰好都到了这里,但是只有一个线程的设置值和当前值相同,他才有权利获取锁          // lock acquired          locked = true;          return true;        }      }      timeout -= DEFAULT_ACQUIRY_RESOLUTION_MILLIS;      /*        延迟100 毫秒, 这里使用随机时间可能会好一点,可以防止饥饿进程的出现,即,当同时到达多个进程,        只会有一个进程获得锁,其他的都用同样的频率进行尝试,后面有来了一些进行,也以同样的频率申请锁,这将可能导致前面来的锁得不到满足.        使用随机的等待时间可以一定程度上保证公平性       */      Thread.sleep(DEFAULT_ACQUIRY_RESOLUTION_MILLIS);    }    return false;  }  /**   * Acqurired lock release.   */  public synchronized void unlock() {    if (locked) {      redisTemplate.delete(lockKey);      locked = false;    }  }}

 调用:

 RedisLock lock = new RedisLock(redisTemplate, key, 10000, 20000); try {      if(lock.lock()) {          //需要加锁的代码        }      }    } catch (InterruptedException e) {      e.printStackTrace();    }finally {      //为了让分布式锁的算法更稳键些,持有锁的客户端在解锁之前应该再检查一次自己的锁是否已经超时,再去做DEL操作,因为可能客户端因为某个耗时的操作而挂起,
//操作完的时候锁因为超时已经被别人获得,这时就不必解锁了。 ————这里没有做 lock.unlock(); }

六、一些问题

1、为什么不直接使用expire设置超时时间,而将时间的毫秒数其作为value放在redis中?

如下面的方式,把超时的交给redis处理:

lock(key, expireSec){isSuccess = setnx keyif (isSuccess)expire key expireSec}

  这种方式貌似没什么问题,但是假如在setnx后,redis崩溃了,expire就没有执行,结果就是死锁了。锁永远不会超时。

 2、为什么前面的锁已经超时了,还要用getSet去设置新的时间戳的时间获取旧的值,然后和外面的判断超时时间的时间戳比较呢?

  因为是分布式的环境下,可以在前一个锁失效的时候,有两个进程进入到锁超时的判断。如:

C0超时了,还持有锁,C1/C2同时请求进入了方法里面

C1/C2获取到了C0的超时时间

C1使用getSet方法

C2也执行了getSet方法

假如我们不加 oldValueStr.equals(currentValueStr) 的判断,将会C1/C2都将获得锁,加了之后,能保证C1和C2只能一个能获得锁,一个只能继续等待。

注意:这里可能导致超时时间不是其原本的超时时间,C1的超时时间可能被C2覆盖了,但是他们相差的毫秒及其小,这里忽略了。

 

致谢:感谢您的阅读!转载请加原文链接,谢谢。转载请加上原文链接,谢谢!http://www.cnblogs.com/0201zcr/p/5942748.html