你的位置:首页 > ASP.net教程

[ASP.net教程]Netty实现高性能RPC服务器优化篇之消息序列化


  在本人写的前一篇文章中,谈及有关如何利用Netty开发实现,高性能RPC服务器的一些设计思路、设计原理,以及具体的实现方案(具体参见:谈谈如何使用Netty开发实现高性能的RPC服务器)。在文章的最后提及到,其实基于该方案设计的RPC服务器的处理性能,还有优化的余地。于是利用周末的时间,在原来NettyRPC框架的基础上,加以优化重构,本次主要优化改造点如下:

  1、NettyRPC中对RPC消息进行编码、解码采用的是Netty自带的ObjectEncoder、ObjectDecoder(对象编码、解码器),该编码、解码器基于的是Java的原生序列化机制,从已有的文章以及测试数据来看,Java的原生序列化性能效率不高,而且产生的序列化二进制码流太大,故本次在优化中,引入RPC消息序列化协议的概念。所谓消息序列化协议,就是针对RPC消息的序列化、反序列化过程进行特殊的定制,引入第三方编解码框架。本次引入的第三方编解码框架有Kryo、Hessian。这里,不得不再次提及一下,对象序列化、反序列化的概念,在RPC的远程服务调用过程中,需要把消息对象通过网络传输,这个就要用到序列化将对象转变成字节流,到达另外一端之后,再反序列化回来变成消息对象。

  2、引入Google Guava并发编程框架对NettyRPC的NIO线程池、业务线程池进行重新梳理封装。

  3、利用第三方编解码框架(Kryo、Hessian)的时候,考虑到高并发的场景下,频繁的创建、销毁序列化对象,会非常消耗JVM的内存资源,影响整个RPC服务器的处理性能,因此引入对象池化(Object Pooling)技术。众所周知,创建新对象并初始化,可能会消耗很多的时间。当需要产生大量对象的时候,可能会对性能造成一定的影响。为了解决这个问题,除了提升硬件条件之外,对象池化技术就是这方面的银弹,而Apache Commons Pool框架就是对象池化技术的一个很好的实现(开源项目路径:http://commons.apache.org/proper/commons-pool/download_pool.cgi)。本文中的Hessian池化工作,主要是基于Apache Commons Pool框架,进行封装处理。

  本文将着重,从上面的三个方面,对重构优化之后的NettyRPC服务器的实现思路、实现方式进行重点讲解。首先请大家简单看下,本次优化之后的NettyRPC服务器支持的序列化协议,如下图所示:

  

  可以很清楚的看到,优化之后的NettyRPC可以支持Kryo、Hessian、Java本地序列化三种消息序列化方式。其中Java本地序列化方式,相信大家应该很熟悉了,再次不在重复讲述。现在我们重点讲述一下,另外两种序列化方式:

  1、Kryo序列化。它是针对Java,而定制实现的高效对象序列化框架,相比Java本地原生序列化方式,Kryo在处理性能上、码流大小上等等方面有很大的优化改进。目前已知的很多著名开源项目,都引入采用了该序列化方式。比如alibaba开源的dubbo RPC等等。本文中采用的Kryo的默认版本是基于:kryo-3.0.3。它的下载链接是:https://github.com/EsotericSoftware/kryo/releases/tag/kryo-parent-3.0.3。为什么采用这个版本?主要原因我上面也说明了,出于应对高并发场景下,频繁地创建、销毁序列化对象,会非常消耗JVM的内存资源、以及时间。Kryo的这个发行版本中,集成引入了序列化对象池功能模块(KryoFactory、KryoPool),这样我们就不必再利用Apache Commons Pool对其进行二次封装。

  2、Hessian序列化。Hessian本身是一种序列化协议,它比Java原生的序列化、反序列化速度更快、序列化出来的数据也更小。它是采用二进制格式进行数据传输,而且,目前支持多种语言格式。本文中采用的是:hessian-4.0.37 版本,它的下载链接是:http://hessian.caucho.com/#Java。

  接下来,先来看下优化之后的NettyRPC的消息协议编解码包(newlandframework.netty.rpc.serialize.support、newlandframework.netty.rpc.serialize.support.kryo、newlandframework.netty.rpc.serialize.support.hessian)的结构,如下图所示:

     

  其中RPC请求消息结构代码如下:

/** * @filename:MessageRequest.java * * Newland Co. Ltd. All rights reserved. * * @Description:rpc服务请求结构 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.model;import java.io.Serializable;import org.apache.commons.lang.builder.ReflectionToStringBuilder;public class MessageRequest implements Serializable {  private String messageId;  private String className;  private String methodName;  private Class<?>[] typeParameters;  private Object[] parametersVal;  public String getMessageId() {    return messageId;  }  public void setMessageId(String messageId) {    this.messageId = messageId;  }  public String getClassName() {    return className;  }  public void setClassName(String className) {    this.className = className;  }  public String getMethodName() {    return methodName;  }  public void setMethodName(String methodName) {    this.methodName = methodName;  }  public Class<?>[] getTypeParameters() {    return typeParameters;  }  public void setTypeParameters(Class<?>[] typeParameters) {    this.typeParameters = typeParameters;  }  public Object[] getParameters() {    return parametersVal;  }  public void setParameters(Object[] parametersVal) {    this.parametersVal = parametersVal;  }  public String toString() {    return ReflectionToStringBuilder.toStringExclude(this, new String[]{"typeParameters", "parametersVal"});  }}

  RPC应答消息结构,如下所示:

/** * @filename:MessageResponse.java * * Newland Co. Ltd. All rights reserved. * * @Description:rpc服务应答结构 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.model;import java.io.Serializable;import org.apache.commons.lang.builder.ReflectionToStringBuilder;public class MessageResponse implements Serializable {  private String messageId;  private String error;  private Object resultDesc;  public String getMessageId() {    return messageId;  }  public void setMessageId(String messageId) {    this.messageId = messageId;  }  public String getError() {    return error;  }  public void setError(String error) {    this.error = error;  }  public Object getResult() {    return resultDesc;  }  public void setResult(Object resultDesc) {    this.resultDesc = resultDesc;  }  public String toString() {    return ReflectionToStringBuilder.toString(this);  }}

  现在,我们就来对上述的RPC请求消息、应答消息进行编解码框架的设计。由于NettyRPC中的协议类型,目前已经支持Kryo序列化、Hessian序列化、Java原生本地序列化方式。考虑到可扩展性,故要抽象出RPC消息序序列化协议类型对象(RpcSerializeProtocol),它的代码实现如下所示:

/** * @filename:RpcSerializeProtocol.java * * Newland Co. Ltd. All rights reserved. * * @Description:RPC消息序序列化协议类型 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support;import org.apache.commons.lang.builder.ReflectionToStringBuilder;import org.apache.commons.lang.builder.ToStringStyle;public enum RpcSerializeProtocol {  //目前由于没有引入跨语言RPC通信机制,暂时采用支持同构语言Java序列化/反序列化机制的第三方插件  //NettyRPC目前已知的序列化插件有:Java原生序列化、Kryo、Hessian  JDKSERIALIZE("jdknative"), KRYOSERIALIZE("kryo"), HESSIANSERIALIZE("hessian");  private String serializeProtocol;  private RpcSerializeProtocol(String serializeProtocol) {    this.serializeProtocol = serializeProtocol;  }  public String toString() {    ReflectionToStringBuilder.setDefaultStyle(ToStringStyle.SHORT_PREFIX_STYLE);    return ReflectionToStringBuilder.toString(this);  }  public String getProtocol() {    return serializeProtocol;  }}

  针对不同编解码序列化的框架(这里主要是指Kryo、Hessian),再抽象、萃取出一个RPC消息序列化/反序列化接口(RpcSerialize)、RPC消息编解码接口(MessageCodecUtil)。

/** * @filename:RpcSerialize.java * * Newland Co. Ltd. All rights reserved. * * @Description:RPC消息序列化/反序列化接口定义 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support;import java.io.IOException;import java.io.InputStream;import java.io.OutputStream;public interface RpcSerialize {  void serialize(OutputStream output, Object object) throws IOException;  Object deserialize(InputStream input) throws IOException;}

/** * @filename:MessageCodecUtil.java * * Newland Co. Ltd. All rights reserved. * * @Description:RPC消息编解码接口 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support;import io.netty.buffer.ByteBuf;import java.io.IOException;public interface MessageCodecUtil {  //RPC消息报文头长度4个字节  final public static int MESSAGE_LENGTH = 4;  public void encode(final ByteBuf out, final Object message) throws IOException;  public Object decode(byte[] body) throws IOException;}

  最后我们的NettyRPC框架要能自由地支配、定制Netty的RPC服务端、客户端,采用何种序列化来进行RPC消息对象的网络传输。因此,要再抽象一个RPC消息序列化协议选择器接口(RpcSerializeFrame),对应的实现如下:

/** * @filename:RpcSerializeFrame.java * * Newland Co. Ltd. All rights reserved. * * @Description:RPC消息序序列化协议选择器接口 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support;import io.netty.channel.ChannelPipeline;public interface RpcSerializeFrame {  public void select(RpcSerializeProtocol protocol, ChannelPipeline pipeline);}

  现在有了上面定义的一系列的接口,现在就可以定制实现,基于Kryo、Hessian方式的RPC消息序列化、反序列化模块了。先来看下整体的类图结构:

  首先是RPC消息的编码器MessageEncoder,它继承自Netty的MessageToByteEncoder编码器。主要是把RPC消息对象编码成二进制流的格式,对应实现如下:

/** * @filename:MessageEncoder.java * * Newland Co. Ltd. All rights reserved. * * @Description:RPC消息编码接口 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support;import io.netty.buffer.ByteBuf;import io.netty.channel.ChannelHandlerContext;import io.netty.handler.codec.MessageToByteEncoder;public class MessageEncoder extends MessageToByteEncoder<Object> {  private MessageCodecUtil util = null;  public MessageEncoder(final MessageCodecUtil util) {    this.util = util;  }  protected void encode(final ChannelHandlerContext ctx, final Object msg, final ByteBuf out) throws Exception {    util.encode(out, msg);  }}

  接下来是RPC消息的解码器MessageDecoder,它继承自Netty的ByteToMessageDecoder。主要针对二进制流反序列化成消息对象。当然了,在之前的一篇文章中我曾经提到,NettyRPC是基于TCP协议的,TCP在传输数据的过程中会出现所谓的“粘包”现象,所以我们的MessageDecoder要对RPC消息体的长度进行校验,如果不满足RPC消息报文头中指定的消息体长度,我们直接重置一下ByteBuf读索引的位置,具体可以参考如下的代码方式,进行RPC消息协议的解析:

/** * @filename:MessageDecoder.java * * Newland Co. Ltd. All rights reserved. * * @Description:RPC消息解码接口 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support;import io.netty.buffer.ByteBuf;import io.netty.channel.ChannelHandlerContext;import io.netty.handler.codec.ByteToMessageDecoder;import java.io.IOException;import java.util.List;import java.util.logging.Level;import java.util.logging.Logger;public class MessageDecoder extends ByteToMessageDecoder {  final public static int MESSAGE_LENGTH = MessageCodecUtil.MESSAGE_LENGTH;  private MessageCodecUtil util = null;  public MessageDecoder(final MessageCodecUtil util) {    this.util = util;  }  protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) {    //出现粘包导致消息头长度不对,直接返回    if (in.readableBytes() < MessageDecoder.MESSAGE_LENGTH) {      return;    }    in.markReaderIndex();    //读取消息的内容长度    int messageLength = in.readInt();        if (messageLength < 0) {      ctx.close();    }    //读到的消息长度和报文头的已知长度不匹配。那就重置一下ByteBuf读索引的位置    if (in.readableBytes() < messageLength) {      in.resetReaderIndex();      return;    } else {      byte[] messageBody = new byte[messageLength];      in.readBytes(messageBody);      try {        Object obj = util.decode(messageBody);        out.add(obj);      } catch (IOException ex) {        Logger.getLogger(MessageDecoder.class.getName()).log(Level.SEVERE, null, ex);      }    }  }}

  现在,我们进一步实现,利用Kryo序列化方式,对RPC消息进行编解码的模块。首先是要实现NettyRPC消息序列化接口(RpcSerialize)的方法。

/** * @filename:KryoSerialize.java * * Newland Co. Ltd. All rights reserved. * * @Description:Kryo序列化/反序列化实现 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support.kryo;import newlandframework.netty.rpc.serialize.support.RpcSerialize;import com.esotericsoftware.kryo.Kryo;import com.esotericsoftware.kryo.io.Input;import com.esotericsoftware.kryo.io.Output;import com.esotericsoftware.kryo.pool.KryoPool;import java.io.IOException;import java.io.InputStream;import java.io.OutputStream;public class KryoSerialize implements RpcSerialize {  private KryoPool pool = null;  public KryoSerialize(final KryoPool pool) {    this.pool = pool;  }  public void serialize(OutputStream output, Object object) throws IOException {    Kryo kryo = pool.borrow();    Output out = new Output(output);    kryo.writeClassAndObject(out, object);    out.close();    pool.release(kryo);  }  public Object deserialize(InputStream input) throws IOException {    Kryo kryo = pool.borrow();    Input in = new Input(input);    Object result = kryo.readClassAndObject(in);    in.close();    pool.release(kryo);    return result;  }}

   接着利用Kryo库里面的对象池,对RPC消息对象进行编解码。首先是Kryo对象池工厂(KryoPoolFactory),这个也是我为什么选择kryo-3.0.3版本的原因了。代码如下:

/** * @filename:KryoPoolFactory.java * * Newland Co. Ltd. All rights reserved. * * @Description:Kryo对象池工厂 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support.kryo;import com.esotericsoftware.kryo.Kryo;import com.esotericsoftware.kryo.pool.KryoFactory;import com.esotericsoftware.kryo.pool.KryoPool;import newlandframework.netty.rpc.model.MessageRequest;import newlandframework.netty.rpc.model.MessageResponse;import org.objenesis.strategy.StdInstantiatorStrategy;public class KryoPoolFactory {  private static KryoPoolFactory poolFactory = null;  private KryoFactory factory = new KryoFactory() {    public Kryo create() {      Kryo kryo = new Kryo();      kryo.setReferences(false);      //把已知的结构注册到Kryo注册器里面,提高序列化/反序列化效率      kryo.register(MessageRequest.class);      kryo.register(MessageResponse.class);      kryo.setInstantiatorStrategy(new StdInstantiatorStrategy());      return kryo;    }  };  private KryoPool pool = new KryoPool.Builder(factory).build();  private KryoPoolFactory() {  }  public static KryoPool getKryoPoolInstance() {    if (poolFactory == null) {      synchronized (KryoPoolFactory.class) {        if (poolFactory == null) {          poolFactory = new KryoPoolFactory();        }      }    }    return poolFactory.getPool();  }  public KryoPool getPool() {    return pool;  }}

  Kryo对RPC消息进行编码、解码的工具类KryoCodecUtil,实现了RPC消息编解码接口(MessageCodecUtil),具体实现方式如下:

/** * @filename:KryoCodecUtil.java * * Newland Co. Ltd. All rights reserved. * * @Description:Kryo编解码工具类 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support.kryo;import com.esotericsoftware.kryo.pool.KryoPool;import io.netty.buffer.ByteBuf;import java.io.ByteArrayInputStream;import java.io.ByteArrayOutputStream;import java.io.IOException;import newlandframework.netty.rpc.serialize.support.MessageCodecUtil;import com.google.common.io.Closer;public class KryoCodecUtil implements MessageCodecUtil {  private KryoPool pool;  private static Closer closer = Closer.create();  public KryoCodecUtil(KryoPool pool) {    this.pool = pool;  }  public void encode(final ByteBuf out, final Object message) throws IOException {    try {      ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();      closer.register(byteArrayOutputStream);      KryoSerialize kryoSerialization = new KryoSerialize(pool);      kryoSerialization.serialize(byteArrayOutputStream, message);      byte[] body = byteArrayOutputStream.toByteArray();      int dataLength = body.length;      out.writeInt(dataLength);      out.writeBytes(body);    } finally {      closer.close();    }  }  public Object decode(byte[] body) throws IOException {    try {      ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream(body);      closer.register(byteArrayInputStream);      KryoSerialize kryoSerialization = new KryoSerialize(pool);      Object obj = kryoSerialization.deserialize(byteArrayInputStream);      return obj;    } finally {      closer.close();    }  }}

  最后是,Kryo自己的编码器、解码器,其实只要调用Kryo编解码工具类(KryoCodecUtil)里面的encode、decode方法就可以了。现在贴出具体的代码:

/** * @filename:KryoDecoder.java * * Newland Co. Ltd. All rights reserved. * * @Description:Kryo解码器 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support.kryo;import newlandframework.netty.rpc.serialize.support.MessageCodecUtil;import newlandframework.netty.rpc.serialize.support.MessageDecoder;public class KryoDecoder extends MessageDecoder {  public KryoDecoder(MessageCodecUtil util) {    super(util);  }}

/** * @filename:KryoEncoder.java * * Newland Co. Ltd. All rights reserved. * * @Description:Kryo编码器 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support.kryo;import newlandframework.netty.rpc.serialize.support.MessageCodecUtil;import newlandframework.netty.rpc.serialize.support.MessageEncoder;public class KryoEncoder extends MessageEncoder {  public KryoEncoder(MessageCodecUtil util) {    super(util);  }}

  最后,我们再来实现一下,利用Hessian实现RPC消息的编码、解码器代码模块。首先还是Hessian序列化/反序列化实现(HessianSerialize),它同样实现了RPC消息序列化/反序列化接口(RpcSerialize),对应的代码如下:

/** * @filename:HessianSerialize.java * * Newland Co. Ltd. All rights reserved. * * @Description:Hessian序列化/反序列化实现 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support.hessian;import com.caucho.hessian.io.Hessian2Input;import com.caucho.hessian.io.Hessian2Output;import java.io.IOException;import java.io.InputStream;import java.io.OutputStream;import newlandframework.netty.rpc.serialize.support.RpcSerialize;public class HessianSerialize implements RpcSerialize {  public void serialize(OutputStream output, Object object) {    Hessian2Output ho = new Hessian2Output(output);    try {      ho.startMessage();      ho.writeObject(object);      ho.completeMessage();      ho.close();      output.close();    } catch (IOException e) {      e.printStackTrace();    }  }  public Object deserialize(InputStream input) {    Object result = null;    try {      Hessian2Input hi = new Hessian2Input(input);      hi.startMessage();      result = hi.readObject();      hi.completeMessage();      hi.close();    } catch (IOException e) {      e.printStackTrace();    }    return result;  }}

  现在利用对象池(Object Pooling)技术,对Hessian序列化/反序列化类(HessianSerialize)进行池化处理,对应的代码如下:

/** * @filename:HessianSerializeFactory.java * * Newland Co. Ltd. All rights reserved. * * @Description:Hessian序列化/反序列化对象工厂池 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support.hessian;import org.apache.commons.pool2.BasePooledObjectFactory;import org.apache.commons.pool2.PooledObject;import org.apache.commons.pool2.impl.DefaultPooledObject;public class HessianSerializeFactory extends BasePooledObjectFactory<HessianSerialize> {  public HessianSerialize create() throws Exception {    return createHessian();  }  public PooledObject<HessianSerialize> wrap(HessianSerialize hessian) {    return new DefaultPooledObject<HessianSerialize>(hessian);  }  private HessianSerialize createHessian() {    return new HessianSerialize();  }}

/** * @filename:HessianSerializePool.java * * Newland Co. Ltd. All rights reserved. * * @Description:Hessian序列化/反序列化池 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support.hessian;import org.apache.commons.pool2.impl.GenericObjectPool;import org.apache.commons.pool2.impl.GenericObjectPoolConfig;public class HessianSerializePool {  //Netty采用Hessian序列化/反序列化的时候,为了避免重复产生对象,提高JVM内存利用率,故引入对象池技术,经过测试  //遇到高并发序列化/反序列化的场景的时候,序列化效率明显提升不少。  private GenericObjectPool<HessianSerialize> hessianPool;  private static HessianSerializePool poolFactory = null;  private HessianSerializePool() {    hessianPool = new GenericObjectPool<HessianSerialize>(new HessianSerializeFactory());  }  public static HessianSerializePool getHessianPoolInstance() {    if (poolFactory == null) {      synchronized (HessianSerializePool.class) {        if (poolFactory == null) {          poolFactory = new HessianSerializePool();        }      }    }    return poolFactory;  }  //预留接口,后续可以通过Spring Property Placeholder依赖注入  public HessianSerializePool(final int maxTotal, final int minIdle, final long maxWaitMillis, final long minEvictableIdleTimeMillis) {    hessianPool = new GenericObjectPool<HessianSerialize>(new HessianSerializeFactory());    GenericObjectPoolConfig config = new GenericObjectPoolConfig();    //最大池对象总数    config.setMaxTotal(maxTotal);    //最小空闲数    config.setMinIdle(minIdle);    //最大等待时间, 默认的值为-1,表示无限等待    config.setMaxWaitMillis(maxWaitMillis);    //退出连接的最小空闲时间 默认1800000毫秒    config.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);    hessianPool.setConfig(config);  }  public HessianSerialize borrow() {    try {      return getHessianPool().borrowObject();    } catch (final Exception ex) {      ex.printStackTrace();      return null;    }  }  public void restore(final HessianSerialize object) {    getHessianPool().returnObject(object);  }  public GenericObjectPool<HessianSerialize> getHessianPool() {    return hessianPool;  }}

  Hessian序列化对象经过池化处理之后,我们通过Hessian编解码工具类,来“借用”Hessian序列化对象(HessianSerialize),当然了,你借出来之后,一定要还回去嘛。Hessian编解码工具类的实现方式如下:

/** * @filename:HessianCodecUtil.java * * Newland Co. Ltd. All rights reserved. * * @Description:Hessian编解码工具类 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support.hessian;import com.google.common.io.Closer;import io.netty.buffer.ByteBuf;import java.io.ByteArrayInputStream;import java.io.ByteArrayOutputStream;import java.io.IOException;import newlandframework.netty.rpc.serialize.support.MessageCodecUtil;public class HessianCodecUtil implements MessageCodecUtil {  HessianSerializePool pool = HessianSerializePool.getHessianPoolInstance();  private static Closer closer = Closer.create();  public HessianCodecUtil() {  }  public void encode(final ByteBuf out, final Object message) throws IOException {    try {      ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();      closer.register(byteArrayOutputStream);      HessianSerialize hessianSerialization = pool.borrow();      hessianSerialization.serialize(byteArrayOutputStream, message);      byte[] body = byteArrayOutputStream.toByteArray();      int dataLength = body.length;      out.writeInt(dataLength);      out.writeBytes(body);      pool.restore(hessianSerialization);    } finally {      closer.close();    }  }  public Object decode(byte[] body) throws IOException {    try {      ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream(body);      closer.register(byteArrayInputStream);      HessianSerialize hessianSerialization = pool.borrow();      Object object = hessianSerialization.deserialize(byteArrayInputStream);      pool.restore(hessianSerialization);      return object;    } finally {      closer.close();    }  }}

  最后Hessian对RPC消息的编码器、解码器参考实现代码如下所示:

/** * @filename:HessianDecoder.java * * Newland Co. Ltd. All rights reserved. * * @Description:Hessian解码器 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support.hessian;import newlandframework.netty.rpc.serialize.support.MessageCodecUtil;import newlandframework.netty.rpc.serialize.support.MessageDecoder;public class HessianDecoder extends MessageDecoder {  public HessianDecoder(MessageCodecUtil util) {    super(util);  }}

/** * @filename:HessianEncoder.java * * Newland Co. Ltd. All rights reserved. * * @Description:Hessian编码器 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.serialize.support.hessian;import newlandframework.netty.rpc.serialize.support.MessageCodecUtil;import newlandframework.netty.rpc.serialize.support.MessageEncoder;public class HessianEncoder extends MessageEncoder {  public HessianEncoder(MessageCodecUtil util) {    super(util);  }}

  到目前为止,NettyRPC所针对的Kryo、Hessian序列化协议模块,已经设计实现完毕,现在我们就要把这个协议,嵌入NettyRPC的核心模块包(newlandframework.netty.rpc.core),下面只给出优化调整之后的代码,其它代码模块的内容,可以参考我上一篇的文章:谈谈如何使用Netty开发实现高性能的RPC服务器。好了,我们先来看下,NettyRPC核心模块包(newlandframework.netty.rpc.core)的层次结构:

     

  先来看下,NettyRPC服务端的实现部分。首先是,Rpc服务端管道初始化(MessageRecvChannelInitializer),跟上一版本对比,主要引入了序列化消息对象(RpcSerializeProtocol),具体实现代码如下:

/** * @filename:MessageRecvChannelInitializer.java * * Newland Co. Ltd. All rights reserved. * * @Description:Rpc服务端管道初始化 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.core;import io.netty.channel.ChannelInitializer;import io.netty.channel.ChannelPipeline;import io.netty.channel.socket.SocketChannel;import java.util.Map;import newlandframework.netty.rpc.serialize.support.RpcSerializeProtocol;public class MessageRecvChannelInitializer extends ChannelInitializer<SocketChannel> {  private RpcSerializeProtocol protocol;  private RpcRecvSerializeFrame frame = null;  MessageRecvChannelInitializer buildRpcSerializeProtocol(RpcSerializeProtocol protocol) {    this.protocol = protocol;    return this;  }  MessageRecvChannelInitializer(Map<String, Object> handlerMap) {    frame = new RpcRecvSerializeFrame(handlerMap);  }  protected void initChannel(SocketChannel socketChannel) throws Exception {    ChannelPipeline pipeline = socketChannel.pipeline();    frame.select(protocol, pipeline);  }}

  Rpc服务器执行模块(MessageRecvExecutor)中,默认的序列化采用Java原生本地序列化机制,并且优化了线程池异步调用的层次结构。具体代码如下:

/** * @filename:MessageRecvExecutor.java * * Newland Co. Ltd. All rights reserved. * * @Description:Rpc服务器执行模块 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.core;import com.google.common.util.concurrent.FutureCallback;import com.google.common.util.concurrent.Futures;import com.google.common.util.concurrent.ListenableFuture;import com.google.common.util.concurrent.ListeningExecutorService;import com.google.common.util.concurrent.MoreExecutors;import io.netty.bootstrap.ServerBootstrap;import io.netty.channel.ChannelFuture;import io.netty.channel.ChannelFutureListener;import io.netty.channel.ChannelHandlerContext;import io.netty.channel.ChannelOption;import io.netty.channel.EventLoopGroup;import io.netty.channel.nio.NioEventLoopGroup;import io.netty.channel.socket.nio.NioServerSocketChannel;import java.nio.channels.spi.SelectorProvider;import java.util.Iterator;import java.util.Map;import java.util.Set;import java.util.concurrent.Callable;import java.util.concurrent.ConcurrentHashMap;import java.util.concurrent.ThreadFactory;import java.util.concurrent.ThreadPoolExecutor;import java.util.logging.Level;import newlandframework.netty.rpc.model.MessageKeyVal;import newlandframework.netty.rpc.model.MessageRequest;import newlandframework.netty.rpc.model.MessageResponse;import newlandframework.netty.rpc.serialize.support.RpcSerializeProtocol;import org.springframework.beans.BeansException;import org.springframework.beans.factory.InitializingBean;import org.springframework.context.ApplicationContext;import org.springframework.context.ApplicationContextAware;public class MessageRecvExecutor implements ApplicationContextAware, InitializingBean {  private String serverAddress;  //默认JKD本地序列化协议  private RpcSerializeProtocol serializeProtocol = RpcSerializeProtocol.JDKSERIALIZE;  private final static String DELIMITER = ":";  private Map<String, Object> handlerMap = new ConcurrentHashMap<String, Object>();  private static ListeningExecutorService threadPoolExecutor;  public MessageRecvExecutor(String serverAddress, String serializeProtocol) {    this.serverAddress = serverAddress;    this.serializeProtocol = Enum.valueOf(RpcSerializeProtocol.class, serializeProtocol);  }  public static void submit(Callable<Boolean> task, ChannelHandlerContext ctx, MessageRequest request, MessageResponse response) {    if (threadPoolExecutor == null) {      synchronized (MessageRecvExecutor.class) {        if (threadPoolExecutor == null) {          threadPoolExecutor = MoreExecutors.listeningDecorator((ThreadPoolExecutor) RpcThreadPool.getExecutor(16, -1));        }      }    }    ListenableFuture<Boolean> listenableFuture = threadPoolExecutor.submit(task);    //Netty服务端把计算结果异步返回    Futures.addCallback(listenableFuture, new FutureCallback<Boolean>() {      public void onSuccess(Boolean result) {        ctx.writeAndFlush(response).addListener(new ChannelFutureListener() {          public void operationComplete(ChannelFuture channelFuture) throws Exception {            System.out.println("RPC Server Send message-id respone:" + request.getMessageId());          }        });      }      public void onFailure(Throwable t) {        t.printStackTrace();      }    }, threadPoolExecutor);  }  public void setApplicationContext(ApplicationContext ctx) throws BeansException {    try {      MessageKeyVal keyVal = (MessageKeyVal) ctx.getBean(Class.forName("newlandframework.netty.rpc.model.MessageKeyVal"));      Map<String, Object> rpcServiceObject = keyVal.getMessageKeyVal();      Set s = rpcServiceObject.entrySet();      Iterator<Map.Entry<String, Object>> it = s.iterator();      Map.Entry<String, Object> entry;      while (it.hasNext()) {        entry = it.next();        handlerMap.put(entry.getKey(), entry.getValue());      }    } catch (ClassNotFoundException ex) {      java.util.logging.Logger.getLogger(MessageRecvExecutor.class.getName()).log(Level.SEVERE, null, ex);    }  }  public void afterPropertiesSet() throws Exception {    //netty的线程池模型设置成主从线程池模式,这样可以应对高并发请求    //当然netty还支持单线程、多线程网络IO模型,可以根据业务需求灵活配置    ThreadFactory threadRpcFactory = new NamedThreadFactory("NettyRPC ThreadFactory");    //方法返回到Java虚拟机的可用的处理器数量    int parallel = Runtime.getRuntime().availableProcessors() * 2;    EventLoopGroup boss = new NioEventLoopGroup();    EventLoopGroup worker = new NioEventLoopGroup(parallel, threadRpcFactory, SelectorProvider.provider());    try {      ServerBootstrap bootstrap = new ServerBootstrap();      bootstrap.group(boss, worker).channel(NioServerSocketChannel.class)          .childHandler(new MessageRecvChannelInitializer(handlerMap).buildRpcSerializeProtocol(serializeProtocol))          .option(ChannelOption.SO_BACKLOG, 128)          .childOption(ChannelOption.SO_KEEPALIVE, true);      String[] ipAddr = serverAddress.split(MessageRecvExecutor.DELIMITER);      if (ipAddr.length == 2) {        String host = ipAddr[0];        int port = Integer.parseInt(ipAddr[1]);        ChannelFuture future = bootstrap.bind(host, port).sync();        System.out.printf("[author tangjie] Netty RPC Server start success!\nip:%s\nport:%d\nprotocol:%s\n\n", host, port, serializeProtocol);        future.channel().closeFuture().sync();      } else {        System.out.printf("[author tangjie] Netty RPC Server start fail!\n");      }    } finally {      worker.shutdownGracefully();      boss.shutdownGracefully();    }  }}

  Rpc服务器消息处理(MessageRecvHandler)也跟随着调整:

/** * @filename:MessageRecvHandler.java * * Newland Co. Ltd. All rights reserved. * * @Description:Rpc服务器消息处理 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.core;import io.netty.channel.ChannelHandlerContext;import io.netty.channel.ChannelInboundHandlerAdapter;import java.util.Map;import newlandframework.netty.rpc.model.MessageRequest;import newlandframework.netty.rpc.model.MessageResponse;public class MessageRecvHandler extends ChannelInboundHandlerAdapter {  private final Map<String, Object> handlerMap;  public MessageRecvHandler(Map<String, Object> handlerMap) {    this.handlerMap = handlerMap;  }  public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {    MessageRequest request = (MessageRequest) msg;    MessageResponse response = new MessageResponse();    MessageRecvInitializeTask recvTask = new MessageRecvInitializeTask(request, response, handlerMap);    //不要阻塞nio线程,复杂的业务逻辑丢给专门的线程池    MessageRecvExecutor.submit(recvTask, ctx, request, response);  }  public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {    //网络有异常要关闭通道    ctx.close();  }}

  Rpc服务器消息线程任务处理(MessageRecvInitializeTask)完成的任务也更加单纯,即根据RPC消息的请求报文,利用反射得到最终的计算结果,并把结果写入RPC应答报文结构。代码如下:

/** * @filename:MessageRecvInitializeTask.java * * Newland Co. Ltd. All rights reserved. * * @Description:Rpc服务器消息线程任务处理 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.core;import io.netty.channel.ChannelHandlerContext;import java.util.Map;import java.util.concurrent.Callable;import newlandframework.netty.rpc.model.MessageRequest;import newlandframework.netty.rpc.model.MessageResponse;import org.apache.commons.lang.reflect.MethodUtils;public class MessageRecvInitializeTask implements Callable<Boolean> {  private MessageRequest request = null;  private MessageResponse response = null;  private Map<String, Object> handlerMap = null;  private ChannelHandlerContext ctx = null;  public MessageResponse getResponse() {    return response;  }  public MessageRequest getRequest() {    return request;  }  public void setRequest(MessageRequest request) {    this.request = request;  }  MessageRecvInitializeTask(MessageRequest request, MessageResponse response, Map<String, Object> handlerMap) {    this.request = request;    this.response = response;    this.handlerMap = handlerMap;    this.ctx = ctx;  }  public Boolean call() {    response.setMessageId(request.getMessageId());    try {      Object result = reflect(request);      response.setResult(result);      return Boolean.TRUE;    } catch (Throwable t) {      response.setError(t.toString());      t.printStackTrace();      System.err.printf("RPC Server invoke error!\n");      return Boolean.FALSE;    }  }  private Object reflect(MessageRequest request) throws Throwable {    String className = request.getClassName();    Object serviceBean = handlerMap.get(className);    String methodName = request.getMethodName();    Object[] parameters = request.getParameters();    return MethodUtils.invokeMethod(serviceBean, methodName, parameters);  }}

  刚才说到了,NettyRPC的服务端,可以选择具体的序列化协议,目前是通过硬编码方式实现。后续可以考虑,通过Spring IOC方式,依赖注入。其对应代码如下:

/** * @filename:RpcRecvSerializeFrame.java * * Newland Co. Ltd. All rights reserved. * * @Description:RPC服务端消息序列化协议框架 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.core;import io.netty.channel.ChannelPipeline;import io.netty.handler.codec.LengthFieldBasedFrameDecoder;import io.netty.handler.codec.LengthFieldPrepender;import io.netty.handler.codec.serialization.ClassResolvers;import io.netty.handler.codec.serialization.ObjectDecoder;import io.netty.handler.codec.serialization.ObjectEncoder;import java.util.Map;import newlandframework.netty.rpc.serialize.support.MessageCodecUtil;import newlandframework.netty.rpc.serialize.support.RpcSerializeFrame;import newlandframework.netty.rpc.serialize.support.RpcSerializeProtocol;import newlandframework.netty.rpc.serialize.support.hessian.HessianCodecUtil;import newlandframework.netty.rpc.serialize.support.hessian.HessianDecoder;import newlandframework.netty.rpc.serialize.support.hessian.HessianEncoder;import newlandframework.netty.rpc.serialize.support.kryo.KryoCodecUtil;import newlandframework.netty.rpc.serialize.support.kryo.KryoDecoder;import newlandframework.netty.rpc.serialize.support.kryo.KryoEncoder;import newlandframework.netty.rpc.serialize.support.kryo.KryoPoolFactory;public class RpcRecvSerializeFrame implements RpcSerializeFrame {  private Map<String, Object> handlerMap = null;  public RpcRecvSerializeFrame(Map<String, Object> handlerMap) {    this.handlerMap = handlerMap;  }  //后续可以优化成通过spring ioc方式注入  public void select(RpcSerializeProtocol protocol, ChannelPipeline pipeline) {    switch (protocol) {      case JDKSERIALIZE: {        pipeline.addLast(new LengthFieldBasedFrameDecoder(Integer.MAX_VALUE, 0, MessageCodecUtil.MESSAGE_LENGTH, 0, MessageCodecUtil.MESSAGE_LENGTH));        pipeline.addLast(new LengthFieldPrepender(MessageCodecUtil.MESSAGE_LENGTH));        pipeline.addLast(new ObjectEncoder());        pipeline.addLast(new ObjectDecoder(Integer.MAX_VALUE, ClassResolvers.weakCachingConcurrentResolver(this.getClass().getClassLoader())));        pipeline.addLast(new MessageRecvHandler(handlerMap));        break;      }      case KRYOSERIALIZE: {        KryoCodecUtil util = new KryoCodecUtil(KryoPoolFactory.getKryoPoolInstance());        pipeline.addLast(new KryoEncoder(util));        pipeline.addLast(new KryoDecoder(util));        pipeline.addLast(new MessageRecvHandler(handlerMap));        break;      }      case HESSIANSERIALIZE: {        HessianCodecUtil util = new HessianCodecUtil();        pipeline.addLast(new HessianEncoder(util));        pipeline.addLast(new HessianDecoder(util));        pipeline.addLast(new MessageRecvHandler(handlerMap));        break;      }    }  }}

  到目前为止,NettyRPC的服务端的设计实现,已经告一段落。

  现在继续实现一下NettyRPC的客户端模块。其中,Rpc客户端管道初始化(MessageSendChannelInitializer)模块调整之后,同样也支持选择具体的消息序列化协议(RpcSerializeProtocol)。代码如下:

/** * @filename:MessageSendChannelInitializer.java * * Newland Co. Ltd. All rights reserved. * * @Description:Rpc客户端管道初始化 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.core;import io.netty.channel.ChannelInitializer;import io.netty.channel.ChannelPipeline;import io.netty.channel.socket.SocketChannel;import newlandframework.netty.rpc.serialize.support.RpcSerializeProtocol;public class MessageSendChannelInitializer extends ChannelInitializer<SocketChannel> {  private RpcSerializeProtocol protocol;  private RpcSendSerializeFrame frame = new RpcSendSerializeFrame();  MessageSendChannelInitializer buildRpcSerializeProtocol(RpcSerializeProtocol protocol) {    this.protocol = protocol;    return this;  }    protected void initChannel(SocketChannel socketChannel) throws Exception {    ChannelPipeline pipeline = socketChannel.pipeline();    frame.select(protocol, pipeline);  }}

  Rpc客户端执行模块(MessageSendExecutor)代码实现如下:

/** * @filename:MessageSendExecutor.java * * Newland Co. Ltd. All rights reserved. * * @Description:Rpc客户端执行模块 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.core;import com.google.common.reflect.Reflection;import newlandframework.netty.rpc.serialize.support.RpcSerializeProtocol;public class MessageSendExecutor {  private RpcServerLoader loader = RpcServerLoader.getInstance();  public MessageSendExecutor() {  }  public MessageSendExecutor(String serverAddress, RpcSerializeProtocol serializeProtocol) {    loader.load(serverAddress, serializeProtocol);  }  public void setRpcServerLoader(String serverAddress, RpcSerializeProtocol serializeProtocol) {    loader.load(serverAddress, serializeProtocol);  }  public void stop() {    loader.unLoad();  }  public static <T> T execute(Class<T> rpcInterface) {    return (T) Reflection.newProxy(rpcInterface, new MessageSendProxy<T>());  }}

  Rpc客户端线程任务处理(MessageSendInitializeTask),其中参数增加了协议类型(RpcSerializeProtocol),具体代码如下:

/** * @filename:MessageSendInitializeTask.java * * Newland Co. Ltd. All rights reserved. * * @Description:Rpc客户端线程任务处理 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.core;import io.netty.bootstrap.Bootstrap;import io.netty.channel.ChannelFuture;import io.netty.channel.ChannelFutureListener;import io.netty.channel.ChannelOption;import io.netty.channel.EventLoopGroup;import io.netty.channel.socket.nio.NioSocketChannel;import java.net.InetSocketAddress;import java.util.concurrent.Callable;import newlandframework.netty.rpc.serialize.support.RpcSerializeProtocol;public class MessageSendInitializeTask implements Callable<Boolean> {  private EventLoopGroup eventLoopGroup = null;  private InetSocketAddress serverAddress = null;  private RpcSerializeProtocol protocol;  MessageSendInitializeTask(EventLoopGroup eventLoopGroup, InetSocketAddress serverAddress, RpcSerializeProtocol protocol) {    this.eventLoopGroup = eventLoopGroup;    this.serverAddress = serverAddress;    this.protocol = protocol;  }  public Boolean call() {    Bootstrap b = new Bootstrap();    b.group(eventLoopGroup)        .channel(NioSocketChannel.class).option(ChannelOption.SO_KEEPALIVE, true);    b.handler(new MessageSendChannelInitializer().buildRpcSerializeProtocol(protocol));    ChannelFuture channelFuture = b.connect(serverAddress);    channelFuture.addListener(new ChannelFutureListener() {      public void operationComplete(final ChannelFuture channelFuture) throws Exception {        if (channelFuture.isSuccess()) {          MessageSendHandler handler = channelFuture.channel().pipeline().get(MessageSendHandler.class);          RpcServerLoader.getInstance().setMessageSendHandler(handler);        }      }    });    return Boolean.TRUE;  }}

  Rpc客户端消息处理(MessageSendProxy)的实现方式调整重构之后,如下所示:

/** * @filename:MessageSendProxy.java * * Newland Co. Ltd. All rights reserved. * * @Description:Rpc客户端消息处理 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.core;import java.lang.reflect.Method;import java.util.UUID;import newlandframework.netty.rpc.model.MessageRequest;import com.google.common.reflect.AbstractInvocationHandler;public class MessageSendProxy<T> extends AbstractInvocationHandler {  public Object handleInvocation(Object proxy, Method method, Object[] args) throws Throwable {    MessageRequest request = new MessageRequest();    request.setMessageId(UUID.randomUUID().toString());    request.setClassName(method.getDeclaringClass().getName());    request.setMethodName(method.getName());    request.setTypeParameters(method.getParameterTypes());    request.setParameters(args);    MessageSendHandler handler = RpcServerLoader.getInstance().getMessageSendHandler();    MessageCallBack callBack = handler.sendRequest(request);    return callBack.start();  }}

  同样,NettyRPC的客户端也是可以选择协议类型的,必须注意的是,NettyRPC的客户端和服务端的协议类型必须一致,才能互相通信。NettyRPC的客户端消息序列化协议框架代码实现方式如下:

/** * @filename:RpcSendSerializeFrame.java * * Newland Co. Ltd. All rights reserved. * * @Description:RPC客户端消息序列化协议框架 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.core;import io.netty.channel.ChannelPipeline;import io.netty.handler.codec.LengthFieldBasedFrameDecoder;import io.netty.handler.codec.LengthFieldPrepender;import io.netty.handler.codec.serialization.ClassResolvers;import io.netty.handler.codec.serialization.ObjectDecoder;import io.netty.handler.codec.serialization.ObjectEncoder;import newlandframework.netty.rpc.serialize.support.MessageCodecUtil;import newlandframework.netty.rpc.serialize.support.hessian.HessianCodecUtil;import newlandframework.netty.rpc.serialize.support.hessian.HessianDecoder;import newlandframework.netty.rpc.serialize.support.hessian.HessianEncoder;import newlandframework.netty.rpc.serialize.support.kryo.KryoCodecUtil;import newlandframework.netty.rpc.serialize.support.kryo.KryoDecoder;import newlandframework.netty.rpc.serialize.support.kryo.KryoEncoder;import newlandframework.netty.rpc.serialize.support.kryo.KryoPoolFactory;import newlandframework.netty.rpc.serialize.support.RpcSerializeFrame;import newlandframework.netty.rpc.serialize.support.RpcSerializeProtocol;public class RpcSendSerializeFrame implements RpcSerializeFrame {  //后续可以优化成通过spring ioc方式注入  public void select(RpcSerializeProtocol protocol, ChannelPipeline pipeline) {    switch (protocol) {      case JDKSERIALIZE: {        pipeline.addLast(new LengthFieldBasedFrameDecoder(Integer.MAX_VALUE, 0, MessageCodecUtil.MESSAGE_LENGTH, 0, MessageCodecUtil.MESSAGE_LENGTH));        pipeline.addLast(new LengthFieldPrepender(MessageCodecUtil.MESSAGE_LENGTH));        pipeline.addLast(new ObjectEncoder());        pipeline.addLast(new ObjectDecoder(Integer.MAX_VALUE, ClassResolvers.weakCachingConcurrentResolver(this.getClass().getClassLoader())));        pipeline.addLast(new MessageSendHandler());        break;      }      case KRYOSERIALIZE: {        KryoCodecUtil util = new KryoCodecUtil(KryoPoolFactory.getKryoPoolInstance());        pipeline.addLast(new KryoEncoder(util));        pipeline.addLast(new KryoDecoder(util));        pipeline.addLast(new MessageSendHandler());        break;      }      case HESSIANSERIALIZE: {        HessianCodecUtil util = new HessianCodecUtil();        pipeline.addLast(new HessianEncoder(util));        pipeline.addLast(new HessianDecoder(util));        pipeline.addLast(new MessageSendHandler());        break;      }    }  }}

  最后,NettyRPC客户端,要加载NettyRPC服务端的一些上下文(Context)信息。因此,RPC服务器配置加载(RpcServerLoader)的代码重构调整如下:

/** * @filename:RpcServerLoader.java * * Newland Co. Ltd. All rights reserved. * * @Description:rpc服务器配置加载 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.core;import com.google.common.util.concurrent.FutureCallback;import com.google.common.util.concurrent.Futures;import com.google.common.util.concurrent.ListenableFuture;import com.google.common.util.concurrent.ListeningExecutorService;import com.google.common.util.concurrent.MoreExecutors;import io.netty.channel.EventLoopGroup;import io.netty.channel.nio.NioEventLoopGroup;import java.net.InetSocketAddress;import java.util.concurrent.ThreadPoolExecutor;import java.util.concurrent.locks.Condition;import java.util.concurrent.locks.Lock;import java.util.concurrent.locks.ReentrantLock;import java.util.logging.Level;import java.util.logging.Logger;import newlandframework.netty.rpc.serialize.support.RpcSerializeProtocol;public class RpcServerLoader {  private volatile static RpcServerLoader rpcServerLoader;  private final static String DELIMITER = ":";  //默认采用Java原生序列化协议方式传输RPC消息  private RpcSerializeProtocol serializeProtocol = RpcSerializeProtocol.JDKSERIALIZE;  //方法返回到Java虚拟机的可用的处理器数量  private final static int parallel = Runtime.getRuntime().availableProcessors() * 2;  //netty nio线程池  private EventLoopGroup eventLoopGroup = new NioEventLoopGroup(parallel);  private static ListeningExecutorService threadPoolExecutor = MoreExecutors.listeningDecorator((ThreadPoolExecutor) RpcThreadPool.getExecutor(16, -1));  private MessageSendHandler messageSendHandler = null;  //等待Netty服务端链路建立通知信号  private Lock lock = new ReentrantLock();  private Condition connectStatus = lock.newCondition();  private Condition handlerStatus = lock.newCondition();  private RpcServerLoader() {  }  //并发双重锁定  public static RpcServerLoader getInstance() {    if (rpcServerLoader == null) {      synchronized (RpcServerLoader.class) {        if (rpcServerLoader == null) {          rpcServerLoader = new RpcServerLoader();        }      }    }    return rpcServerLoader;  }  public void load(String serverAddress, RpcSerializeProtocol serializeProtocol) {    String[] ipAddr = serverAddress.split(RpcServerLoader.DELIMITER);    if (ipAddr.length == 2) {      String host = ipAddr[0];      int port = Integer.parseInt(ipAddr[1]);      final InetSocketAddress remoteAddr = new InetSocketAddress(host, port);      ListenableFuture<Boolean> listenableFuture = threadPoolExecutor.submit(new MessageSendInitializeTask(eventLoopGroup, remoteAddr, serializeProtocol));      //监听线程池异步的执行结果成功与否再决定是否唤醒全部的客户端RPC线程      Futures.addCallback(listenableFuture, new FutureCallback<Boolean>() {        public void onSuccess(Boolean result) {          try {            lock.lock();            if (messageSendHandler == null) {              handlerStatus.await();            }            //Futures异步回调,唤醒所有rpc等待线程            if (result == Boolean.TRUE && messageSendHandler != null) {              connectStatus.signalAll();            }          } catch (InterruptedException ex) {            Logger.getLogger(RpcServerLoader.class.getName()).log(Level.SEVERE, null, ex);          } finally {            lock.unlock();          }        }        public void onFailure(Throwable t) {          t.printStackTrace();        }      }, threadPoolExecutor);    }  }  public void setMessageSendHandler(MessageSendHandler messageInHandler) {    try {      lock.lock();      this.messageSendHandler = messageInHandler;      handlerStatus.signal();    } finally {      lock.unlock();    }  }  public MessageSendHandler getMessageSendHandler() throws InterruptedException {    try {      lock.lock();      //Netty服务端链路没有建立完毕之前,先挂起等待      if (messageSendHandler == null) {        connectStatus.await();      }      return messageSendHandler;    } finally {      lock.unlock();    }  }  public void unLoad() {    messageSendHandler.close();    threadPoolExecutor.shutdown();    eventLoopGroup.shutdownGracefully();  }  public void setSerializeProtocol(RpcSerializeProtocol serializeProtocol) {    this.serializeProtocol = serializeProtocol;  }}

到目前为止,NettyRPC的主要核心模块的代码,全部呈现出来了。到底经过改良重构之后,NettyRPC服务器的性能如何?还是那句话,实践是检验真理的唯一标准。现在,我们就来启动三台NettyRPC服务器进行验证。具体服务端的配置参数,参考如下:

1、Java原生本地序列化NettyRPC服务器,对应IP为:127.0.0.1:18887。

2、Kryo序列化NettyRPC服务器,对应IP为:127.0.0.1:18888。

3、Hessian序列化NettyRPC服务器,对应IP为:127.0.0.1:18889。

具体的Spring配置文件结构如下所示:

 

参数配置的内容如下:

rpc-server-jdknative.properties

#rpc server's ip address configrpc.server.addr=127.0.0.1:18887

rpc-server-kryo.properties

#rpc server's ip address configrpc.server.addr=127.0.0.1:18888

rpc-server-hessian.properties

#rpc server's ip address configrpc.server.addr=127.0.0.1:18889

rpc-invoke-config-jdknative.

<??><beans ="http://www.springframework.org/schema/beans"    ="http://www.w3.org/2001/    ="http://www.springframework.org/schema/context"    xsi:schemaLocation="http://www.springframework.org/schema/beans    http://www.springframework.org/schema/beans/spring-beans.xsd    http://www.springframework.org/schema/context    http://www.springframework.org/schema/context/spring-context.xsd"> <context:component-scan base-package="newlandframework.netty.rpc.core"/> <context:property-placeholder location="classpath:newlandframework/netty/rpc/config/rpc-server-jdknative.properties"/> <bean id="rpcbean" class="newlandframework.netty.rpc.model.MessageKeyVal">  <property name="messageKeyVal">   <map>    <entry key="newlandframework.netty.rpc.servicebean.Calculate">     <ref bean="calc"/>    </entry>   </map>  </property> </bean> <bean id="calc" class="newlandframework.netty.rpc.servicebean.CalculateImpl"/> <bean id="rpcServer" class="newlandframework.netty.rpc.core.MessageRecvExecutor">  <constructor-arg name="serverAddress" value="${rpc.server.addr}"/>  <constructor-arg name="serializeProtocol" value="JDKSERIALIZE"/> </bean></beans>

rpc-invoke-config-kryo.

<??><beans ="http://www.springframework.org/schema/beans"    ="http://www.w3.org/2001/    ="http://www.springframework.org/schema/context"    xsi:schemaLocation="http://www.springframework.org/schema/beans    http://www.springframework.org/schema/beans/spring-beans.xsd    http://www.springframework.org/schema/context    http://www.springframework.org/schema/context/spring-context.xsd"> <context:component-scan base-package="newlandframework.netty.rpc.core"/> <context:property-placeholder location="classpath:newlandframework/netty/rpc/config/rpc-server-kryo.properties"/> <bean id="rpcbean" class="newlandframework.netty.rpc.model.MessageKeyVal">  <property name="messageKeyVal">   <map>    <entry key="newlandframework.netty.rpc.servicebean.Calculate">     <ref bean="calc"/>    </entry>   </map>  </property> </bean> <bean id="calc" class="newlandframework.netty.rpc.servicebean.CalculateImpl"/> <bean id="rpcServer" class="newlandframework.netty.rpc.core.MessageRecvExecutor">  <constructor-arg name="serverAddress" value="${rpc.server.addr}"/>  <constructor-arg name="serializeProtocol" value="KRYOSERIALIZE"/> </bean></beans>

rpc-invoke-config-hessian.

<??><beans ="http://www.springframework.org/schema/beans"    ="http://www.w3.org/2001/    ="http://www.springframework.org/schema/context"    xsi:schemaLocation="http://www.springframework.org/schema/beans    http://www.springframework.org/schema/beans/spring-beans.xsd    http://www.springframework.org/schema/context    http://www.springframework.org/schema/context/spring-context.xsd"> <context:component-scan base-package="newlandframework.netty.rpc.core"/> <context:property-placeholder location="classpath:newlandframework/netty/rpc/config/rpc-server-hessian.properties"/> <bean id="rpcbean" class="newlandframework.netty.rpc.model.MessageKeyVal">  <property name="messageKeyVal">   <map>    <entry key="newlandframework.netty.rpc.servicebean.Calculate">     <ref bean="calc"/>    </entry>   </map>  </property> </bean> <bean id="calc" class="newlandframework.netty.rpc.servicebean.CalculateImpl"/> <bean id="rpcServer" class="newlandframework.netty.rpc.core.MessageRecvExecutor">  <constructor-arg name="serverAddress" value="${rpc.server.addr}"/>  <constructor-arg name="serializeProtocol" value="HESSIANSERIALIZE"/> </bean></beans>

  然后,对应的NettRPC服务器启动方式参考如下:

new ClassPath);
new ClassPath);
new ClassPath

  如果一切顺利的话,在控制台上,会打印出支持Java原生序列化、Kryo序列化、Hessian序列化的NettyRPC服务器的启动信息,具体截图如下:

  首先是Java原生序列化NettyRPC启动成功截图:

     

  然后是Kryo序列化NettyRPC启动成功截图:

     

  最后是Hessian序列化NettyRPC启动成功截图:

     

  现在,还是跟我上一篇文章用到的并发测试用例一样,设计构造一个,瞬时值并行度1W的求和计算RPC请求,总共请求10笔,然后观察每一笔具体协议(Java原生序列化、Kryo、Hessian)的RPC消息编码、解码消耗时长(毫秒)。

  测试代码如下所示:

/** * @filename:RpcParallelTest.java * * Newland Co. Ltd. All rights reserved. * * @Description:rpc并发测试代码 * @author tangjie * @version 1.0 * */package newlandframework.netty.rpc.servicebean;import java.util.concurrent.CountDownLatch;import java.util.concurrent.TimeUnit;import newlandframework.netty.rpc.core.MessageSendExecutor;import newlandframework.netty.rpc.serialize.support.RpcSerializeProtocol;import org.apache.commons.lang.time.StopWatch;public class RpcParallelTest {  public static void parallelTask(MessageSendExecutor executor, int parallel, String serverAddress, RpcSerializeProtocol protocol) throws InterruptedException {    //开始计时    StopWatch sw = new StopWatch();    sw.start();    CountDownLatch signal = new CountDownLatch(1);    CountDownLatch finish = new CountDownLatch(parallel);    for (int index = 0; index < parallel; index++) {      CalcParallelRequestThread client = new CalcParallelRequestThread(executor, signal, finish, index);      new Thread(client).start();    }    //10000个并发线程瞬间发起请求操作    signal.countDown();    finish.await();    sw.stop();    String tip = String.format("[%s] RPC调用总共耗时: [%s] 毫秒", protocol, sw.getTime());    System.out.println(tip);  }  //JDK本地序列化协议  public static void JdkNativeParallelTask(MessageSendExecutor executor, int parallel) throws InterruptedException {    String serverAddress = "127.0.0.1:18887";    RpcSerializeProtocol protocol = RpcSerializeProtocol.JDKSERIALIZE;    executor.setRpcServerLoader(serverAddress, protocol);    RpcParallelTest.parallelTask(executor, parallel, serverAddress, protocol);    TimeUnit.SECONDS.sleep(3);  }  //Kryo序列化协议  public static void KryoParallelTask(MessageSendExecutor executor, int parallel) throws InterruptedException {    String serverAddress = "127.0.0.1:18888";    RpcSerializeProtocol protocol = RpcSerializeProtocol.KRYOSERIALIZE;    executor.setRpcServerLoader(serverAddress, protocol);    RpcParallelTest.parallelTask(executor, parallel, serverAddress, protocol);    TimeUnit.SECONDS.sleep(3);  }  //序列化协议  public static void HessianParallelTask(MessageSendExecutor executor, int parallel) throws InterruptedException {    String serverAddress = "127.0.0.1:18889";    RpcSerializeProtocol protocol = RpcSerializeProtocol.HESSIANSERIALIZE;    executor.setRpcServerLoader(serverAddress, protocol);    RpcParallelTest.parallelTask(executor, parallel, serverAddress, protocol);    TimeUnit.SECONDS.sleep(3);  }  public static void main(String[] args) throws Exception {    //并行度10000    int parallel = 10000;    MessageSendExecutor executor = new MessageSendExecutor();    for (int i = 0; i < 10; i++) {      JdkNativeParallelTask(executor, parallel);      KryoParallelTask(executor, parallel);      HessianParallelTask(executor, parallel);      System.out.printf("[author tangjie] Netty RPC Server 消息协议序列化第[%d]轮并发验证结束!\n\n", i);    }    executor.stop();  }}

  运行截图如下:

  现在,我就收集汇总一下测试数据,分析对比一下,每一种协议对RPC消息序列化/反序列化的性能(注意:由于每台计算机的配置差异,下面的测试结论可能存在出入,本次测试结果仅仅是学习交流之用!)。

  经过10轮的压力测试,具体的数据如下所示:

 

  可以很明显的发现,经过上述代码框架优化调整之后,Java原生本地序列化的处理性能,跟之前博客文章中设计实现处理性能上对比,运行效率有较大的提升(RPC消息序列化/反序列耗时更少)。Java本地序列化、Kryo序列化、Hessian序列化在10次的压力测试中,分别有1次耗时大于10S(秒)的操作。经过统计分析之后,结果如下图:

     

  Kryo序列化、Hessian序列化的性能不分伯仲,并且总体优于Java本地序列化的性能水平。

  再来看下,10轮压力测试中,Java本地序列化、Kryo序列化、Hessian序列化的耗时波动情况,如下图所示:

    

  可以很清楚的发现,三种序列化方式分别有个“拐点”,除开这个“拐点”,三种序列化方式耗时相对来说比较平稳。但是总体而言,Kryo、Hessian序列化耗时有适当的波动,震荡相对比较明显;而Java原生序列化耗时相对来说比较平稳,没有出现频繁的震荡,但是耗时较长。

  写在最后:本文是前一篇文章“谈谈如何使用Netty开发实现高性能的RPC服务器”的性能优化篇,主要从RPC消息序列化机制、对象池(Object Pooling)、多线程优化等角度,对之前设计实现的基于Netty的RPC服务器框架进行优化重构。当然目前的RPC服务器,还仅仅处于“各自为政”的状态,能不能把集群中的若干台RPC服务器,通过某种机制进行统一的分布式协调管理、以及服务调度呢?答案是肯定的,一种可行的方案就是引入Zookeeper,进行服务治理。后续有时间,我会继续加以优化改良,到时再以博客的形式,呈现给大家!由于本人的认知水平、技术能力的限制,本文中涉及的技术观点、测试数据、测试结论等等,仅限于博客园中园友们的学习交流之用。如果本人有说得不对的地方,欢迎各位园友批评指正!

  洋洋洒洒地写了这么多,感谢您的耐心阅读。相信读完本篇文章,面前的您,对于利用Java开发高性能的服务端应用,又多了一份了解和自信。路漫漫其修远兮,吾将上下而求索。对于软件知识的求学探索之路没有止境,谨以此话和大家共勉之!