你的位置:首页 > Java教程

[Java教程]java核心数据结构总结


  JDK提供了一组主要的数据结构的实现,如List、Set、Map等常用结构,这些结构都继承自java.util.collection接口。

  • List接口

  List有三种不同的实现,ArrayList和Vector使用数组实现,其封装了对内部数组的操作。LinkedList使用了循环双向链表的数据结构,LinkedList链表是由一系列的链表项连接而成,一个链表项包括三部分:链表内容、前驱表项和后驱表项。

  LinkedList的表项结构如图:

     

  LinkedList表项间的连接关系如图:

  

  可以看出,无论LinkedList是否为空,链表都有一个header表项,它即表示链表的开头也表示链表的结尾。表项header的后驱表项便是链表的第一个元素,其前驱表项就是链表的最后一个元素。

  对基于链表和基于数组的两种List的不同实现做一些比较:

  1、增加元素到列表的末尾:

  在ArrayList中源代码如下:

1 public boolean add(E e) {2     ensureCapacityInternal(size + 1); // Increments modCount!!3     elementData[size++] = e;4     return true;5   }

  add()方法性能的好坏取决于grow()方法的性能:

 1 private void grow(int minCapacity) { 2     // overflow-conscious code 3     int oldCapacity = elementData.length; 4     int newCapacity = oldCapacity + (oldCapacity >> 1); 5     if (newCapacity - minCapacity < 0) 6       newCapacity = minCapacity; 7     if (newCapacity - MAX_ARRAY_SIZE > 0) 8       newCapacity = hugeCapacity(minCapacity); 9     // minCapacity is usually close to size, so this is a win:10     elementData = Arrays.copyOf(elementData, newCapacity);11   }

  可以看出,当ArrayList对容量的需求超过当前数组的大小是,会进行数组扩容,扩容的过程中需要大量的数组复制,数组复制调用System.arraycopy()方法,操作效率是非常快的。

  在LinkedList源码中add()方法:

1 public boolean add(E e) {2     linkLast(e);3     return true;4   }

  linkLast()方法如下:

 1 void linkLast(E e) { 2     final Node<E> l = last; 3     final Node<E> newNode = new Node<>(l, e, null); 4     last = newNode; 5     if (l == null) 6       first = newNode; 7     else 8       l.next = newNode; 9     size++;10     modCount++;11   }

  LinkedList是基于链表实现,因此不需要维护容量大小,但是每次都新增元素都要新建一个Node对象,并进行一系列赋值,在频繁系统调用中,对系统性能有一定影响。性能测试得出,在列表末尾增加元素,ArrayList比LinkedList性能要好,因为数组是连续的,在末尾增加元素,只有在空间不足时才会进行数组扩容,大部分情况下追加操作效率还是比较高的。

  2、增加元素到列表的任意位置:

  List接口还提供了在任意位置插入元素的方法:void add(int index,E element)方法,由于实现方式不同,ArrayList和LinkedList在这个方法上存在一定的差异。由于ArrayList是基于数组实现的,而数组是一块连续的内存,如果在数组的任意位置插入元素,必然会导致该位置之后的所有元素重新排序,其效率相对较低。

  ArrayList源码实现:

1 public void add(int index, E element) {2     rangeCheckForAdd(index);3     ensureCapacityInternal(size + 1); // Increments modCount!!4     System.arraycopy(elementData, index, elementData, index + 1,5             size - index);6     elementData[index] = element;7     size++;8   }

  可以看出每次插入都会进行数组复制,大量的数组复制操作导致系统性能效率低下。并且数组插入的位置越靠前,数组复制的开销就越大。因此,尽可能插入元素在其尾端附近,有助于提高该方法的性能。

  LinkedList的源码实现:

 1 public void add(int index, E element) { 2     checkPositionIndex(index); 3  4     if (index == size) 5       linkLast(element); 6     else 7       linkBefore(element, node(index)); 8   } 9 void linkBefore(E e, Node<E> succ) {10     // assert succ != null;11     final Node<E> pred = succ.prev;12     final Node<E> newNode = new Node<>(pred, e, succ);13     succ.prev = newNode;14     if (pred == null)15       first = newNode;16     else17       pred.next = newNode;18     size++;19     modCount++;20   }

  对于LinkedList的在尾端插入和对任意位置插入数据是一样的,并不会因为插入位置靠前而导致效率低下。因此,在应用中,如果经常往任意位置插入元素,可以考虑使用LinkedList提到ArrayList。

  3、删除任意位置的元素:

  List接口还提供了在任意位置删除元素的方法:remove(int index)方法。在ArrayList中,对于remove()方法和add()方法一样,在任意位置移除元素,都需要数组复制。

  ArrayList的remove()方法的源码如下: 

 1 public E remove(int index) { 2     rangeCheck(index); 3  4     modCount++; 5     E oldValue = elementData(index); 6  7     int numMoved = size - index - 1; 8     if (numMoved > 0) 9       System.arraycopy(elementData, index+1, elementData, index,10                numMoved);11     elementData[--size] = null; // clear to let GC do its work12 13     return oldValue;14   }

  可以看出,在ArrayList的每一次删除操作,都需要进行数组重组,并且删除元素的位置越靠前,数组重组的开销就越大。

  LinkedList的remove()方法的源码:

 1 public E remove(int index) { 2     checkElementIndex(index); 3     return unlink(node(index)); 4   } 5 E unlink(Node<E> x) { 6     // assert x != null; 7     final E element = x.item; 8     final Node<E> next = x.next; 9     final Node<E> prev = x.prev;10 11     if (prev == null) {12       first = next;13     } else {14       prev.next = next;15       x.prev = null;16     }17 18     if (next == null) {19       last = prev;20     } else {21       next.prev = prev;22       x.next = null;23     }24 25     x.item = null;26     size--;27     modCount++;28     return element;29   }

 1 Node<E> node(int index) { 2     // assert isElementIndex(index); 3  4     if (index < (size >> 1)) { 5       Node<E> x = first; 6       for (int i = 0; i < index; i++) 7         x = x.next; 8       return x; 9     } else {10       Node<E> x = last;11       for (int i = size - 1; i > index; i--)12         x = x.prev;13       return x;14     }15   }

  在LinkedList中首先通过循环找到要删除的元素,如果元素位于前半段则,从前往后找;若位置位于后半段,则从后往前找,但是要移除中间的元素,却几乎要遍历半个List。所有,无论元素位于较前还是较后,效率都比较高,但是位于中间效率就非常低。

  4、容量参数:

  容量参数是ArrayList和Vector等基于数组的List特有的性能参数,它表示初始化数组的大小。当数组所存储的元素的数量超过其原有的大小时,它就会进行扩容,即进行一次数组复制,因此,合理设置数组大小有助于减少扩容次数,从而提升系统性能。

   5、遍历列表:

  在JDK1.5之后,至少有三种遍历列表的方式:forEach操作,迭代器,for循环。通过测试发现,forEach综合性能不如迭代器,而for循环遍历列表时,ArrayList的性能表现最好,而LinkedList的性能差的无法忍受,因为LinkedList进行随机访问,总会进行一次列表的遍历操作。

  对于ArrayList是基于数组来实现的,随机访问效率快,因此有限选择随机访问。而LinkedList是基于链表实现的,随机访问的性能差,应该避免使用。

  • Map接口

  围绕着Map接口,最主要的实现类有:HashMap、hashTable、LinkedHashMap和TreeMap。在HashMap的子类中还有Properties类的实现。

  1、HashMap和Hashtable

  首先说一下,HashMap和Hashtable的区别:Hashtable的大部分方法都实现了同步,而HashMap没有。因此,HashMap不是线程安全的。其次,Hashtable不允许key或value使用null值,而HashMap可以。第三是内部的算法不同,它们对key的hash算法和hash值到内存索引的映射算法不同。

  HashMap就是将key做hash算法,然后将hash值映射到内存地址,直接取得key所对应的数据。在HashMap的底层使用的是数组,所谓的内存地址即数组的下标索引。

  HashMap中不得不提的就是hash冲突,需要存放到HashMap中的元素1和元素2经过hash计算,发现对应的内存地址一样。如下图:

  

  HashMap底层使用的是数组,但是数组内的元素不是简单的值,而是一个Entry对象。如下图所示:

  可以看出,HashMap的内部维护了一个Entry数组,每个entry表项包括:key、value、next、hash。next部分表示指向另一个Entry。在HashMap的put()方法中,可以看到当put()方法有冲突时,新的entry依然会安放在对应的索引下标内,并替换掉原来的值,同时为了保证旧值不丢失,会将新的entry的next指向旧值。这样便实现了在一个数组索引空间内存放多个值。

  HashMap的put()操作的源码:

 1 public V put(K key, V value) { 2     if (table == EMPTY_TABLE) { 3       inflateTable(threshold); 4     } 5     if (key == null) 6       return putForNullKey(value); 7     int hash = hash(key); 8     int i = indexFor(hash, table.length); 9     for (Entry<K,V> e = table[i]; e != null; e = e.next) {10       Object k;11       if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {12         V oldValue = e.value;//取得旧值13         e.value = value;14         e.recordAccess(this);15         return oldValue;//返回旧值16       }17     }18 19     modCount++;20     addEntry(hash, key, value, i);//添加当前表项到i位置21     return null;22   }23 void addEntry(int hash, K key, V value, int bucketIndex) {24     if ((size >= threshold) && (null != table[bucketIndex])) {25       resize(2 * table.length);26       hash = (null != key) ? hash(key) : 0;27       bucketIndex = indexFor(hash, table.length);28     }29 30     createEntry(hash, key, value, bucketIndex);31   }32 void createEntry(int hash, K key, V value, int bucketIndex) {33     Entry<K,V> e = table[bucketIndex];34     table[bucketIndex] = new Entry<>(hash, key, value, e);//将新增元素放到i位置,并把它的next指向旧值35     size++;36   }

  基于HashMap的这种实现,只要对hashCode()和hash()的方法实现的够好,就能尽可能的减少冲突,那么对HashMap的操作就等价于对数组随机访问的操作,具有很好的性能。但是,如果处理不好,在产生大量冲突的情况下,HashMap就退化为几个链表,性能极差。

  2、容量参数:

  因为HashMap和Hashtable底层是基于数组实现的,当数组空间不足时,就会进行数组扩容,数组扩容就会进行数组复制,是十分影响性能的。

  HashMap的构造函数:

1 public HashMap(int initialCapacity)2 public HashMap(int initialCapacity, float loadFactor)

  initialCapacity指定HashMap的初始容量,loadFactor是指负载因子(元素个数/元素总量),HashMap中还定义了一个阈值,它是当前数组容量和负载因子的乘积,当数组的实际容量超过阈值时,就会进行数组扩容。

  另外,HashMap的性能一定程度上取决于hashCode()的实现,一个好的hashCode()的实现,可以尽可能减少冲突,提升hashMap的访问速度。

  3、LinkedHashMap

  HashMap的一大缺点就是无序性,放入的数据,在遍历取出时候是无序的。如果需要保证元素输入时的顺序,可以使用LinkedHashMap。

  LinkedHashMap继承自HashMap,因此,其性能是比较好。在HashMap的基础上,LinkedHashMap内部又增加了一个链表,用于存放元素的顺序。LinkedHashMap提供了两种类型的顺序,一种是元素插入时的顺序,一种是最近访问的顺序。

1 public LinkedHashMap(int initialCapacity,2             float loadFactor,3             boolean accessOrder)

  其中,accessOrder为true是,是按元素最后访问时间排序,当accessOrder为false时,按插入顺序排序。

  4、TreeMap

  TreeMap可以对元素进行排序,TreeMap是基于元素的固有顺序而排序的(有Comparable或Comparator确定)。

  TreeMap是根据key进行排序的,为了确定key的排序算法,可以使用两种方法指定:

  1:在TreeMap的构造函数中注入Comparator

  TreeMap(Comparator<? super K> comparator);

  2:使用一个实现了Comparable接口的key。

  TreeMap是内部是基于红黑树实现,红黑树是一种平衡查找树,其统计性能优于平衡二叉树。

  • Set接口

  set集合中的元素是不能重复的,其中最主要的实现就是HashSet、LinkedHashSrt和TreeSet。查看Set接口实现类,可以发现所有的Set的一些实现都是相应Map的一种封装。

  set特性如图所示:

  • 集合操作的一些优化建议

  1、分离循环中被重复调用的代码。如:for(int i=0;i<list.size();i++),可以将list.size()分离出来。

  2、省略相同的操作

  3、减少方法的调用,方法调用时消耗系统堆栈的,会牺牲系统的性能。

  • RandomAccess接口

  RandomAccess接口是一个标识接口,本身没有提供任何方法。主要的目的是为了标识出那些可以支持快速随机访问的List的实现。例如,根据是否实现RandomAccess接口在变量的时候选择不同的遍历实现,以提升性能。