你的位置:首页 > Java教程

[Java教程]Java并发包中Lock的实现原理


Lock 的简介及使用

         Lock是java 1.5中引入的线程同步工具,它主要用于多线程下共享资源的控制。本质上Lock仅仅是一个接口(位于源码包中的java\util\concurrent\locks中),它包含以下方法

//尝试获取锁,获取成功则返回,否则阻塞当前线程 void lock(); //尝试获取锁,线程在成功获取锁之前被中断,则放弃获取锁,抛出异常 void lockInterruptibly() throws InterruptedException; //尝试获取锁,获取锁成功则返回true,否则返回false boolean tryLock(); //尝试获取锁,若在规定时间内获取到锁,则返回true,否则返回false,未获取锁之前被中断,则抛出异常 boolean tryLock(long time, TimeUnit unit) throws InterruptedException; //释放锁 void unlock(); //返回当前锁的条件变量,通过条件变量可以实现类似notify和wait的功能,一个锁可以有多个条件变量 Condition newCondition();

       Lock有三个实现类,一个是ReentrantLock,另两个是ReentrantReadWriteLock类中的两个静态内部类ReadLock和WriteLock。

          使用方法:多线程下访问(互斥)共享资源时, 访问前加锁,访问结束以后解锁,解锁的操作推荐放入finally块中。

Lock l = ...; //根据不同的实现Lock接口类的构造函数得到一个锁对象 l.lock(); //获取锁位于try块的外面 try { // access the resource protected by this lock } finally
 {   l.unlock();}

         注意,加锁位于对资源访问的try块的外部,特别是使用lockInterruptibly方法加锁时就必须要这样做,这为了防止线程在获取锁时被中断,这时就不必(也不能)释放锁。

try {   l.lockInterruptibly();//获取锁失败时不会执行finally块中的unlock语句   try{     // access the resource protected by this lock   }finally{     l.unlock();   }} catch (InterruptedException e) {   // TODO Auto-generated catch block   e.printStackTrace();}

实现Lock接口的基本思想

          需要实现锁的功能,两个必备元素,一个是表示(锁)状态的变量(我们假设0表示没有线程获取锁,1表示已有线程占有锁),另一个是队列,队列中的节点表示因未能获取锁而阻塞的线程。为了解决多核处理器下多线程缓存不一致的问题,表示状态的变量必须声明为voaltile类型,并且对表示状态的变量和队列的某些操作要保证原子性和可见性。原子性和可见性的操作主要通过Atomic包中的方法实现。

 

      线程获取锁的大致过程(这里没有考虑可重入和尝试获取锁过程被中断或超时的情况)

          1. 读取表示状态的变量

        2. 如果表示状态的变量的值为0,那么当前线程尝试将变量值设置为1(通过CAS操作完成),当多个线程同时将表示状态的变量值由0设置成1时,仅一个线程能成功,其

           它线程都会失败

            2.1 若成功,表示获取了锁,

                  2.1.1 如果该线程已位于在队列中,则将其出列(并将下一个节点则变成了队列的第一个节点)

                  2.1.2 如果该线程未入列,则不用对队列进行维护

                  然后当前线程从lock方法中返回,对共享资源进行访问。

             2.2 若失败,则当前线程将自身放入等待(锁的)队列中并阻塞自身,此时线程一直被阻塞在lock方法中,没有从该方法中返回(被唤醒后仍然在lock方法中,并回                  到第1步重新开始)

        3. 如果表示状态的变量的值为1,那么将当前线程放入等待队列中,然后将自身阻塞(被唤醒后仍然在lock方法中,并回到第1步重新开始)

          注意,唤醒并不表示线程能立刻运行,而是表示线程处于就绪状态,可以运行而已

 

      线程释放锁的大致过程

        1. 释放锁的线程将状态变量的值从1设置为0,并唤醒等待(锁)队列中的队首节点,释放锁的线程从就从unlock方法中返回,继续执行线程后面的代码

        2. 被唤醒的线程(队列中的队首节点)和可能和未进入队列并且准备获取的线程竞争获取锁,重复获取锁的过程

        注意:可能有多个线程同时竞争去获取锁,但是一次只能有一个线程去释放锁,队列中的节点都需要它的前一个节点将其唤醒,例如有队列A<-B-<C ,即由A释放锁时                        唤醒B,B释放锁时唤醒C

 

公平锁和非公平锁

         锁可以分为公平锁和不公平锁,重入锁和非重入锁(关于重入锁的介绍会在ReentrantLock源代码分析中介绍),以上过程实际上是非公平锁的获取和释放过程。

公平锁严格按照先来后到的顺去获取锁,而非公平锁允许插队获取锁。

          公平锁获取锁的过程上有些不同,在使用公平锁时,某线程想要获取锁,不仅需要判断当前表示状态的变量的值是否为0,还要判断队列里是否还有其他线程,若队列中还有线程则说明当前线程需要排队,进行入列操作,并将自身阻塞;若队列为空,才能尝试去获取锁。而对于非公平锁,当表示状态的变量的值是为0,就可以尝试获取锁,不必理会队列是否为空,这样就实现了插队的特点。通常来说非公平锁的吞吐率比公平锁要高,我们一般常用非公平锁。

           这里需要解释一点,什么情况下才会出现,表示锁的状态的变量的值是为0而且队列中仍有其它线程等待获取锁的情况。

           假设有三个线程A、B、C。A线程为正在运行的线程并持有锁,队列中有一个C线程,位于队首。现在A线程要释放锁,具体执行的过程操作可分为两步:

            1. 将表示锁状态的变量值由1变为0,

            2. C线程被唤醒,这里要明确两点:(1)C线程被唤醒并不代表C线程开始执行,C线程此时是处于就绪状态,要等待CPU的轮询(2)C线程目前还并未出列,C线程                   要进入运行状态,并且通过竞争获取到锁以后才会出列。

            如果C线程此时还没有进入运行态,同时未在队列中的B线程进行获取锁的操作,B就会发现虽然当前没有线程持有锁,但是队列不为空(C线程仍然位于队列中),要满足先来后到的特点(B在C之后执行获取锁的操作),B线程就不能去尝试获取锁,而是进行入列操作。

 

实现Condition接口的基本思想

         Condition 本质是一个接口,它包含如下方法

// 让线程进入等待通知状态,在未接受到通知之前,可通过中断结束等待状态,并抛出异常void await() throws InterruptedException;// 让线程进入等通知待状态,无法接受中断void awaitUninterruptibly();//让线程进入等待通知状态,超时结束等待状态,并抛出异常long awaitNanos(long nanosTimeout) throws InterruptedException;boolean await(long time, TimeUnit unit) throws InterruptedException;boolean awaitUntil(Date deadline) throws InterruptedException;//将同一等待条件下的一个线程,从等待通知状态转换为等待锁状态void signal();//将同一等待条件下的所有个线程,从等待通知阻塞状态转换为等待锁阻塞状态void signalAll();

           一个Condition实例的内部实际上维护了一个队列,队列中的节点表示由于(某些条件不满足而)线程自身调用await方法阻塞的线程。Condition接口中有两个重要的方法,即 await方法和 signal方法。线程调用这个方法之前该线程必须已经获取了Condition实例所依附的锁。这样的原因有两个,1对于await方法,它内部会执行释放锁的操作,所以使用前必须获取锁2对于signal方法,是为了避免多个线程同时调用同一个Condition实例的singal方法时引起的(队列)出列竞争。下面是这两个方法的执行流程。

          await方法:

                            1. 入列到条件队列(这里不是等待锁的队列

                            2. 释放锁

                             3. 阻塞自身线程

                             ------------被唤醒后执行-------------

                            4. 尝试去获取锁(执行到这里时线程已不在条件队列中,而是位于等待(锁的)队列中,参见signal方法)

                                4.1 成功,从await方法中返回,执行线程后面的代码

                                4.2 失败,阻塞自己(等待前一个节点释放锁时将它唤醒)

         注意:await方法时自身线程调用的,线程在await方法中阻塞,并没有从await方法中返回,当唤醒后继续执行await方法中后面的代码。可以看出await方法释放了锁,又尝                     试获得锁。

 

         signal方法:

                           1. 将条件队列的队首节点取出,放入等待锁队列的队尾

                           2. 唤醒该节点对应的线程

         注意:signal是由其它线程调用

condition

Lock和Condition的使用例程

           下面这个例子,就是利用lock和condition实现B线程先打印一句信息后,然后A线程打印两句信息(不能中断),交替十次后结束

public class ConditionDemo {  volatile int key = 0;  Lock l = new ReentrantLock();  Condition c = l.newCondition();    public static void main(String[] args){    ConditionDemo demo = new ConditionDemo();    new Thread(demo.new A()).start();    new Thread(demo.new B()).start();  }    class A implements Runnable{    @Override    public void run() {      int i = 10;      while(i > 0){        l.lock();        try{          if(key == 1){            System.out.println("A is Running");            System.out.println("A is Running");            i--;            key = 0;            c.signal();          }else{            c.awaitUninterruptibly();                      }                  }        finally{          l.unlock();        }      }    }      }    class B implements Runnable{    @Override    public void run() {      int i = 10;      while(i > 0){        l.lock();        try{          if(key == 0){            System.out.println("B is Running");            i--;            key = 1;            c.signal();          }else{            c.awaitUninterruptibly();                      }                  }        finally{          l.unlock();        }      }    }    }}

Lock与synchronized的区别

1. Lock的加锁和解锁都是由java代码配合native方法(调用操作系统的相关方法)实现的,而synchronize的加锁和解锁的过程是由JVM管理的

2. 当一个线程使用synchronize获取锁时,若锁被其他线程占用着,那么当前只能被阻塞,直到成功获取锁。而Lock则提供超时锁和可中断等更加灵活的方式,在未能获取锁的     条件下提供一种退出的机制。

3. 一个锁内部可以有多个Condition实例,即有多路条件队列,而synchronize只有一路条件队列;同样Condition也提供灵活的阻塞方式,在未获得通知之前可以通过中断线程以    及设置等待时限等方式退出条件队列。

4. synchronize对线程的同步仅提供独占模式,而Lock即可以提供独占模式,也可以提供共享模式