你的位置:首页 > Java教程

[Java教程]散列表(hash table)算法导论


1. 引言


    许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作。散列表(hash table)是实现字典操作的一种有效的数据结构。

2. 直接寻址表


    在介绍散列表之前,我们前介绍直接寻址表。

    当关键字的全域U(关键字的范围)比较小时,直接寻址是一种简单而有效的技术。我们假设某应用要用到一个动态集合,其中每个元素的关键字都是取自于全域U={0,1,…,m-1},其中m不是一个很大的数。另外,假设每个元素的关键字都不同。

   为表示动态集合,我们用一个数组,或称为直接寻址表(direct-address table),记为T[0~m-1],其中每一个位置(slot,槽)对应全域U中的一个关键字,对应规则是,槽k指向集合中关键字为k的元素,如果集合中没有关键字为k的元素,则T[k]=NIL。

image

几种字典操作实现起来非常简单:

image

上述的每一个操作的时间均为O(1)时间。

    在某些应用中,我们其实可以把对象作为元素直接保存在寻址表的槽中,而不需要像上图所示使用指针指向该对象,这样可以节省空间。

3. 散列表


(1) 直接寻址的缺点

    我们可以看出,直接寻址技术有几个明显的缺点:如果全域U很大,那么表T 将要申请一段非常长的空间,很可能会申请失败;对于全域较大,但是元素却十分稀疏的情况,使用这种存储方式将浪费大量的存储空间。

(2) 散列函数

    为了克服直接寻址技术的缺点,而又保持其快速字典操作的优势,我们可以利用散列函数(hash function)

h:U→{0,1,2,…,m-1}

来计算关键字k所在的的位置,简单的讲,散列函数h(k)的作用是将范围较大的关键字映射到一个范围较小的集合中。这时我们可以说,一个具有关键字k的元素被散列到槽h(k)上,或者说h(k)是关键字k的散列值

示意图如下:

image

    这时会产生一个问题:两个关键字可能映射到同一槽中(我们称之为冲突(collision)),并且不管你如何优化h(k)函数,这种情况都会发生(因为|U|>m)。

    因此我们现在面临两个问题,一是遇到冲突时如何解决;二是要找出一个的函数h(k)能够尽量的减少冲突;

(3) 通过链表法解决冲突

    我们先来解决第一个问题。

    解决办法就是,我们把同时散列到同一槽中的元素以链表的形式“串联”起来,而该槽中保存的是指向该链表的指针。如下图所示:

image

    采用该解决办法后,我们可以通过如下的操作方式来进行字典操作:

image

    下面我们来分析上图各操作的性能。

    首先是插入操作,很明显时间为O(1)。

    然后分析删除操作,其花费的时间相当于从链表中删除一个元素的时间:如果链表T[h(k)]是双链表,花费的时间为O(1);如果链表T[h(k)]是单链表,则花费的时间和查找操作的渐进运行时间相同。

    下面我们重点分析查找运行时间:

    首先,我们假定任何一个给定元素都等可能地散列在散列表T的任何一个槽位中,且与其他元素被散列在T的哪个位置无关。我们称这个假设为简单均匀散列(simple uniform hashing)。

    不失一般性,我们设散列表T的m个槽位散列了n个元素,则平均每个槽位散列了α = n/m个元素,我们称α为T的装载因子(load factor)。我们记位于槽位j的链表为T[j](j=1,2,…,m-1),而nj表示链表T[j]的长度,于是有

n = n0+n1+…+nm-1,

且E[nj] = α = n / m。

    现在我们分查找成功和查找不成功两种情况讨论。

    ① 查找不成功

    在查找不成功的情况下,我们需要遍历链表T[j]的每一个元素,而链表T[j]的长度是α,因此需要时间O(α),加上索引到T(j)的时间O(1),总时间为θ(1 + α)。

    ② 查找成功

    在查找成功的情况下,我们无法准确知道遍历到链表T[j]的何处停止,因此我们只能讨论平均情况。

    我们设xi是散列表T的第i个元素(假设我们按插入顺序对散列表T中的n个元素进行了1~n的编号),ki表示xi.key,其中i = 1,2,…,n,再定义随机变量Xij=I{h(ki)=h(kj)},即:

image

在简单均匀散列的假设下有

P{h(ki)=h(kj)} = 1 / m,

E[Xij] = 1 / m。

则所需检查的元素的数目的期望是:

image

因此,一次成功的检查所需要的时间是O(2 + α / 2 –α / 2n) = θ(1 + α)。

    综合上面的分析,在平均下,全部的字典操作都可以在O(1)时间下完成。

4. 散列函数


    现在我们来解决第二个问题:如何构造一个好的散列函数。

    一个好的散列函数应(近似地)满足简单均匀散列:每个关键字都等可能的被散列到各个槽位,并与其他关键字散列到哪一个槽位无关(但很遗憾,我们一般无法检验这一条件是否成立)。

    在实际应用中,常常可以可以运用启发式方法来构造性能好的散列函数。设计过程中,可以利用关键字分布的有用信息。一个好的方法导出的散列值,在某种程度上应独立于数据可能存在的任何模式。

    下面给出两种基本的构造散列函数的方法:

(1) 除法散列法

    除法散列法的做法很简单,就是让关键字k去除以一个数m,取余数,这样就将k映射到m个槽位中的某一个,即散列函数是:

h(k) = k mod m ,

    由于只做一次除法运算,该方法的速度是非常快的。但应当注意的是,我们在选取m的值时,应当避免一些选取一些值。例如,m不应是2的整数幂,因为如果m = 2 ^ p,则h(k)就是k的p个最低位数字。除非我们已经知道各种最低p位的排列是等可能的,否则我们最好慎重的选择m。而一个不太接近2的整数幂的素数,往往是较好的选择。

(2) 乘法散列法

    该方法包含两个步骤。第一步:用关键字k乘以A(0 < A < 1),并提取kA的小数部分;第二步:用m乘以这个值,在向下取整,即散列函数是:

h(k) = [m (kA mod 1)],

这里“kA mod 1”的是取kA小数部分的意思,即kA –[kA]。

    乘法散列法的一个优点是,一般我们对m的选择不是特别的关键,一般选择它为2的整数幂即可。虽然这个方法对任意的A都适用,但Knuth认为,A ≈ (√5 - 1)/ 2 = 0.618033988…是一个比较理想的值。